Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "nut graph" wg kryterium: Temat


Wyświetlanie 1-2 z 2
Tytuł:
Existence of Regular Nut Graphs for Degree at Most 11
Autorzy:
Fowler, Patrick W.
Gauci, John Baptist
Goedgebeur, Jan
Pisanski, Tomaž
Sciriha, Irene
Powiązania:
https://bibliotekanauki.pl/articles/31550028.pdf
Data publikacji:
2020-05-01
Wydawca:
Uniwersytet Zielonogórski. Wydział Matematyki, Informatyki i Ekonometrii
Tematy:
nut graph
core graph
regular graph
nullity
Opis:
A nut graph is a singular graph with one-dimensional kernel and corresponding eigenvector with no zero elements. The problem of determining the orders n for which d-regular nut graphs exist was recently posed by Gauci, Pisanski and Sciriha. These orders are known for d ≤ 4. Here we solve the problem for all remaining cases d ≤ 11 and determine the complete lists of all d-regular nut graphs of order n for small values of d and n. The existence or non-existence of small regular nut graphs is determined by a computer search. The main tool is a construction that produces, for any d-regular nut graph of order n, another d-regular nut graph of order n+2d. If we are given a sufficient number of d-regular nut graphs of consecutive orders, called seed graphs, this construction may be applied in such a way that the existence of all d-regular nut graphs of higher orders is established. For even d the orders n are indeed consecutive, while for odd d the orders n are consecutive even numbers. Furthermore, necessary conditions for combinations of order and degree for vertex-transitive nut graphs are derived.
Źródło:
Discussiones Mathematicae Graph Theory; 2020, 40, 2; 533-557
2083-5892
Pojawia się w:
Discussiones Mathematicae Graph Theory
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
On Singular Signed Graphs with Nullspace Spanned by a Full Vector: Signed Nut Graphs
Autorzy:
Bašić, Nino
Fowler, Patrick W.
Pisanski, Tomaž
Sciriha, Irene
Powiązania:
https://bibliotekanauki.pl/articles/32222533.pdf
Data publikacji:
2022-11-01
Wydawca:
Uniwersytet Zielonogórski. Wydział Matematyki, Informatyki i Ekonometrii
Tematy:
signed graph
nut graph
singular graph
graph spectrum
Fowler construction
sign-balanced graph
sign-unbalanced graph
cocktail-party graph
Opis:
A signed graph has edge weights drawn from the set {+1, −1}, and is sign-balanced if it is equivalent to an unsigned graph under the operation of sign switching; otherwise it is sign-unbalanced. A nut graph has a one dimensional kernel of the 0-1 adjacency matrix with a corresponding eigenvector that is full. In this paper we generalise the notion of nut graphs to signed graphs. Orders for which regular nut graphs with all edge weights +1 exist have been determined recently for the degrees up to 12. By extending the definition to signed graphs, we here find all pairs (ρ, n) for which a ρ-regular nut graph (sign-balanced or sign-unbalanced) of order n exists with ρ ≤ 11. We devise a construction for signed nut graphs based on a smaller ‘seed’ graph, giving infinite series of both sign-balanced and sign-unbalanced ρ -regular nut graphs. Orders for which a regular nut graph with ρ = n − 1 exists are characterised; they are sign-unbalanced with an underlying graph Kn for which n ≡ 1 (mod 4). Orders for which a regular sign-unbalanced nut graph with ρ = n − 2 exists are also characterised; they have an underlying cocktail-party graph CP(n) with even order n ≥ 8.
Źródło:
Discussiones Mathematicae Graph Theory; 2022, 42, 4; 1351-1382
2083-5892
Pojawia się w:
Discussiones Mathematicae Graph Theory
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-2 z 2

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies