- Tytuł:
- Learning novelty detection outside a class of random curves with application to COVID-19 growth
- Autorzy:
- Rafajłowicz, Wojciech
- Powiązania:
- https://bibliotekanauki.pl/articles/2031122.pdf
- Data publikacji:
- 2021
- Wydawca:
- Społeczna Akademia Nauk w Łodzi. Polskie Towarzystwo Sieci Neuronowych
- Tematy:
-
classification
learning
novelty detection
functional data - Opis:
- Let a class of proper curves is specified by positive examples only. We aim to propose a learning novelty detection algorithm that decides whether a new curve is outside this class or not. In opposite to the majority of the literature, two sources of a curve variability are present, namely, the one inherent to curves from the proper class and observations errors’. Therefore, firstly a decision function is trained on historical data, and then, descriptors of each curve to be classified are learned from noisy observations.When the intrinsic variability is Gaussian, a decision threshold can be established from T2 Hotelling distribution and tuned to more general cases. Expansion coefficients in a selected orthogonal series are taken as descriptors and an algorithm for their learning is proposed that follows nonparametric curve fitting approaches. Its fast version is derived for descriptors that are based on the cosine series. Additionally, the asymptotic normality of learned descriptors and the bound for the probability of their large deviations are proved. The influence of this bound on the decision threshold is also discussed.The proposed approach covers curves described as functional data projected onto a finite-dimensional subspace of a Hilbert space as well a shape sensitive description of curves, known as square-root velocity (SRV). It was tested both on synthetic data and on real-life observations of the COVID-19 growth curves.
- Źródło:
-
Journal of Artificial Intelligence and Soft Computing Research; 2021, 11, 3; 195-215
2083-2567
2449-6499 - Pojawia się w:
- Journal of Artificial Intelligence and Soft Computing Research
- Dostawca treści:
- Biblioteka Nauki