Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "novelty detection" wg kryterium: Temat


Wyświetlanie 1-4 z 4
Tytuł:
Learning novelty detection outside a class of random curves with application to COVID-19 growth
Autorzy:
Rafajłowicz, Wojciech
Powiązania:
https://bibliotekanauki.pl/articles/2031122.pdf
Data publikacji:
2021
Wydawca:
Społeczna Akademia Nauk w Łodzi. Polskie Towarzystwo Sieci Neuronowych
Tematy:
classification
learning
novelty detection
functional data
Opis:
Let a class of proper curves is specified by positive examples only. We aim to propose a learning novelty detection algorithm that decides whether a new curve is outside this class or not. In opposite to the majority of the literature, two sources of a curve variability are present, namely, the one inherent to curves from the proper class and observations errors’. Therefore, firstly a decision function is trained on historical data, and then, descriptors of each curve to be classified are learned from noisy observations.When the intrinsic variability is Gaussian, a decision threshold can be established from T2 Hotelling distribution and tuned to more general cases. Expansion coefficients in a selected orthogonal series are taken as descriptors and an algorithm for their learning is proposed that follows nonparametric curve fitting approaches. Its fast version is derived for descriptors that are based on the cosine series. Additionally, the asymptotic normality of learned descriptors and the bound for the probability of their large deviations are proved. The influence of this bound on the decision threshold is also discussed.The proposed approach covers curves described as functional data projected onto a finite-dimensional subspace of a Hilbert space as well a shape sensitive description of curves, known as square-root velocity (SRV). It was tested both on synthetic data and on real-life observations of the COVID-19 growth curves.
Źródło:
Journal of Artificial Intelligence and Soft Computing Research; 2021, 11, 3; 195-215
2083-2567
2449-6499
Pojawia się w:
Journal of Artificial Intelligence and Soft Computing Research
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
A novelty detection approach to monitoring of epicyclic gearbox health
Autorzy:
Dworakowski, Z.
Dziedziech, K.
Jabłoński, A.
Powiązania:
https://bibliotekanauki.pl/articles/221834.pdf
Data publikacji:
2018
Wydawca:
Polska Akademia Nauk. Czytelnia Czasopism PAN
Tematy:
epicyclic gearbox
soft computing
auto-associative neural network
novelty detection
vibration signal
Opis:
Reliable monitoring for detection of damage in epicyclic gearboxes is a serious concern for all industries in which these gearboxes operate in a harsh environment and in variable operational conditions. In this paper, autonomous multidimensional novelty detection algorithms are used to estimate the gearbox’ health state based on vectors of features calculated from the vibration signal. The authors examine various feature vectors, various sources of data and many different damage scenarios in order to compare novel detection algorithms based on three different principles of operation: a distance in the feature space, a probability distribution, and an ANN (artificial neural network)-based model reconstruction approach. In order to compensate for non-deterministic results of training of neural networks, which may lead to different network performance, the ensemble technique is used to combine responses from several networks. The methods are tested in a series of practical experiments involving implanting a damage in industrial epicyclic gearboxes, and acquisition of data at variable speed conditions.
Źródło:
Metrology and Measurement Systems; 2018, 25, 3; 459-473
0860-8229
Pojawia się w:
Metrology and Measurement Systems
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Fabric Defect Detection Using a Hybrid and Complementary Fractal Feature Vector and FCM-based Novelty Detector
Wykrywanie defektów tkanin za pomocą hybrydowego wektora funkcji fraktalnej i nowatorskiego detektora opartego na zbiorze rozmytym wartości średnich (FCM)
Autorzy:
Zhou, J.
Wang, J.
Bu, H.
Powiązania:
https://bibliotekanauki.pl/articles/232397.pdf
Data publikacji:
2017
Wydawca:
Sieć Badawcza Łukasiewicz - Instytut Biopolimerów i Włókien Chemicznych
Tematy:
defect detection
box-counting dimension
fuzzy c-means
novelty detection
wykrywanie defektów
wektor hybrydowy
zbiór rozmyty wartości średnich
Opis:
Automated detect detection in woven fabrics for quality control is still a challenging novelty detection problem. This work presents five novel fractal features based on the box-counting dimension to address the novelty detection of fabric defect. Making use of the formation of woven fabric, the fractal features are extracted in a one-dimension series obtained by projecting a fabric image along the warp and weft directions, where their complementarity in discriminating defects is taken into account. Furthermore a new novelty detector based on fuzzy c-means (FCM) is devised to deal with one-class classification of the features extracted. Finally, by jointly applying the features proposed and the FCM based novelty detector, we evaluate the method proposed for eight datasets with different defects and textures, where satisfying results are achieved with a low overall missing detection rate.
Automatyczne wykrywanie defektów tkanin w celu kontroli ich jakości mimo wielu dotychczasowych badań nadal stanowi wyzwanie. Mając na celu opracowanie nowatorskiej metody wykrywaniem wad tkanin przedstawiono pięć cech fraktalnych. W celu klasyfikacji wyodrębnionych cech opracowano detektor wad tkanin oparty na zbiorze rozmytym wartości średnich (FCM). Poprzez wspólne zastosowanie proponowanych cech i opartego na FCM detektorze sprawdzono proponowaną metodę dla ośmiu zestawów danych z różnymi defektami i teksturami. Stwierdzono, że otrzymane wyniki są na satysfakcjonującym poziomie.
Źródło:
Fibres & Textiles in Eastern Europe; 2017, 6 (126); 46-52
1230-3666
2300-7354
Pojawia się w:
Fibres & Textiles in Eastern Europe
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Random projection RBF nets for multidimensional density estimation
Autorzy:
Skubalska-Rafajłowicz, E.
Powiązania:
https://bibliotekanauki.pl/articles/929907.pdf
Data publikacji:
2008
Wydawca:
Uniwersytet Zielonogórski. Oficyna Wydawnicza
Tematy:
radialne funkcje bazowe
estymacja
wielowymiarowa gęstość prawdopodobieństwa
redukcja wymiaru
rzutowanie losowe
detekcja nowości
radial basis functions
multivariate density estimation
dimension reduction
normal random projection
novelty detection
Opis:
The dimensionality and the amount of data that need to be processed when intensive data streams are observed grow rapidly together with the development of sensors arrays, CCD and CMOS cameras and other devices. The aim of this paper is to propose an approach to dimensionality reduction as a first stage of training RBF nets. As a vehicle for presenting the ideas, the problem of estimating multivariate probability densities is chosen. The linear projection method is briefly surveyed. Using random projections as the first (additional) layer, we are able to reduce the dimensionality of input data. Bounds on the accuracy of RBF nets equipped with a random projection layer in comparison to RBF nets without dimensionality reduction are established. Finally, the results of simulations concerning multidimensional density estimation are briefly reported.
Źródło:
International Journal of Applied Mathematics and Computer Science; 2008, 18, 4; 455-464
1641-876X
2083-8492
Pojawia się w:
International Journal of Applied Mathematics and Computer Science
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-4 z 4

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies