Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "normal vectors" wg kryterium: Temat


Wyświetlanie 1-2 z 2
Tytuł:
Development of LiDAR Data Classification Algorithms based on Parallel Computing using nVidia CUDA Technology
Autorzy:
Bratuś, R.
Musialik, P.
Prochaska, M.
Rzonca, A.
Powiązania:
https://bibliotekanauki.pl/articles/114693.pdf
Data publikacji:
2016
Wydawca:
Stowarzyszenie Inżynierów i Techników Mechaników Polskich
Tematy:
point cloud classification
parallel computing
normal vectors
Opis:
The paper presents an innovative data classification approach based on parallel computing performed on a GPGPU (General-Purpose Graphics Processing Unit). The results shown in this paper were obtained in the course of a European Commission-funded project: “Research on large-scale storage, sharing and processing of spatial laser data”, which concentrated on LIDAR data storage and sharing via databases and the application of parallel computing using nVidia CUDA technology. The paper describes the general requirements of nVidia CUDA technology application in massive LiDAR data processing. The studied point cloud data structure fulfills these requirements in most potential cases. A unique organization of the processing procedure is necessary. An innovative approach based on rapid parallel computing and analysis of each point’s normal vector to examine point cloud geometry within a classification process is described in this paper. The presented algorithm called LiMON classifies points into basic classes defined in LAS format: ground, buildings, vegetation, low points. The specific stages of the classification process are presented. The efficiency and correctness of LiMON were compared with popular program called Terrascan. The correctness of the results was tested in quantitive and qualitative ways. The test of quality was executed on specific objects, that are usually difficult for classification algorithms. The quantitive test used various environment types: forest, agricultural area, village, town. Reference clouds were obtained via two different methods: (1) automatic classification using Terrascan, (2) manually corrected clouds classified by Terrascan. The following coefficients for quantitive testing of classification correctness were calculated: Type 1 Error, Type 2 Error, Kappa, Total Error. The results shown in the paper present the use of parallel computing on a GPGPU as an attractive route for point cloud data processing.
Źródło:
Measurement Automation Monitoring; 2016, 62, 11; 387-393
2450-2855
Pojawia się w:
Measurement Automation Monitoring
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
On the bundle convergence of double orthogonal series in noncommutative $L_2$-spaces
Autorzy:
Móricz, Ferenc
Le Gac, Barthélemy
Powiązania:
https://bibliotekanauki.pl/articles/1206079.pdf
Data publikacji:
2000
Wydawca:
Polska Akademia Nauk. Instytut Matematyczny PAN
Tematy:
von Neumann algebra
faithful and normal state
completion
Gelfand-Naimark-Segal representation theorem
bundle convergence
almost sure convergence
regular convergence
orthogonal sequence of vectors in $L_2$
Rademacher-Men'shov theorem
convergence in Pringsheim's sense
Opis:
The notion of bundle convergence in von Neumann algebras and their $L_2$-spaces for single (ordinary) sequences was introduced by Hensz, Jajte, and Paszkiewicz in 1996. Bundle convergence is stronger than almost sure convergence in von Neumann algebras. Our main result is the extension of the two-parameter Rademacher-Men'shov theorem from the classical commutative case to the noncommutative case. To our best knowledge, this is the first attempt to adopt the notion of bundle convergence to multiple series. Our method of proof is different from the classical one, because of the lack of the triangle inequality in a noncommutative von Neumann algebra. In this context, bundle convergence resembles the regular convergence introduced by Hardy in the classical case. The noncommutative counterpart of convergence in Pringsheim's sense remains to be found.
Źródło:
Studia Mathematica; 2000, 140, 2; 177-190
0039-3223
Pojawia się w:
Studia Mathematica
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-2 z 2

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies