Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "nonlinear noise reduction" wg kryterium: Temat


Wyświetlanie 1-3 z 3
Tytuł:
Projective filtering based on L1-norm PC
Autorzy:
Przybyła, T.
Wróbel, J.
Pander, T.
Czabański, R.
Jeżewski, J.
Matonia, A.
Powiązania:
https://bibliotekanauki.pl/articles/332906.pdf
Data publikacji:
2013
Wydawca:
Uniwersytet Śląski. Wydział Informatyki i Nauki o Materiałach. Instytut Informatyki. Zakład Systemów Komputerowych
Tematy:
embedded space
projective filtering
nonlinear noise reduction
PCA
L1-norm PCA
przestrzeń osadzona
filtrowanie rzutowe
nieliniowa redukcja szumów
norma L1 PCA
Opis:
The paper presents a modification of nonlinear state-space projections (NSSP) method. The proposed approach deals with the sub-space estimation problem. In the original NSSP method, the principal component analysis (PCA) is used for the subspace determination. The classical PCA uses L2-norm. It is well known that the L2-norm is sensitive to outliers. Thus, in this paper the L1-norm PCA is proposed a subspace determination. In numerical experiments an analytic signal and real ECG signals are processed with the proposed method. The signals are contaminated with Gaussian distributed noise with different signal to noise ratio (SNR). Obtained results confirm the usefulness of the proposed modification.
Źródło:
Journal of Medical Informatics & Technologies; 2013, 22; 79-86
1642-6037
Pojawia się w:
Journal of Medical Informatics & Technologies
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Nonlinear Nonlocal Algorithm for Video Filtering
Autorzy:
El Ouafdi, Ahmed Fouad
El Houari, Hassan
Powiązania:
https://bibliotekanauki.pl/articles/2023335.pdf
Data publikacji:
2021
Wydawca:
Stowarzyszenie Inżynierów i Techników Mechaników Polskich
Tematy:
video filter
noise reduction
nonlocal filter
Bayesian filtering
nonlinear filter
filtr wideo
redukcja szumów
filtr nielokalny
filtrowanie bayesowskie
filtr nieliniowy
Opis:
Video sequences are frequently contaminated by noise throughout the acquisition process, resulting in considerable degradation of video display quality. In this paper, we present a novel method of video filtering. The proposed filter is developed from an optimization problem in which a Bayesian term and a noisy video sequence prior distribution are combined. The method begins by segmenting the video sequence into space-time blocks and then substituting each noisy block by a weighted average of non-local neighbor blocks. Gradient-based weights are used to dynamically adjust the edge preservation and smoothness of the reference block. The obtained formulation enables nonlinear filtering and, hence, preserving key features such as edges and corners while using the intrinsic Bayesian filtering framework. Experiments on different video sequences with varying degrees of noise show that the proposed method performs better than state-of-the-art video filtering approaches.
Źródło:
Advances in Science and Technology. Research Journal; 2021, 15, 4; 243-252
2299-8624
Pojawia się w:
Advances in Science and Technology. Research Journal
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Wpływ redukcji szumu losowego metodą Schreibera na identyfikację systemu generującego dane. Analiza symulacyjna
Impact of the Schreiber Noise Reduction Method on DGP Identification Simulation Analysis
Autorzy:
Orzeszko, Witold
Powiązania:
https://bibliotekanauki.pl/articles/1830757.pdf
Data publikacji:
2011-06-30
Wydawca:
Główny Urząd Statystyczny
Tematy:
Identyfikacja nieliniowości
redukcja szumu losowego
metoda Schreibera
wskaźnik NRL
test BDS
miara informacji wzajemnej
bootstrap
nonlinear time series
noise reduction
Schreiber method
NRL quantity
BDS test
mutual information
Opis:
Jednym ze sposobów ograniczenia negatywnego wpływu obecności szumu losowego na analizę rzeczywistych szeregów czasowych jest stosowanie metod redukcji szumu. Prezentowane w literaturze przedmiotu rezultaty zastosowania takich procedur w procesie identyfikacji nieliniowości i chaosu są zachęcające. Jedną z metod redukcji szumu jest metoda Schreibera, która, jak wykazano, prowadzi do efektywnej redukcji szumu losowego dodanego do danych wygenerowanych z systemów deterministycznych o dynamice chaotycznej. Jednakże w przypadku danych rzeczywistych, badacz zwykle pozbawiony jest wiedzy, czy system generujący rzeczywiście jest deterministyczny. Istnieje więc ryzyko, że redukcji szumu zostaną wówczas poddane dane losowe. W niniejszym artykule wykazano, iż w sytuacji, gdy brak jest wyraźnych podstaw do stwierdzenia, że badany szereg pochodzi z systemu deterministycznego, metodę Schreibera należy stosować z dużą ostrożnością. Z przeprowadzonych symulacji, w których wykorzystano test BDS, miarę informacji wzajemnej oraz współczynnik korelacji liniowej Pearsona wynika bowiem, że redukcja szumu może wprowadzić do analizowanych danych, zależności o charakterze nieliniowym. W efekcie szeregi losowe mogą zostać błędnie zidentyfikowane jako nieliniowe.
A presence of a noise is typical for real-world data. In order to avoid its negative impact on methods of time series analysis, noise reduction procedures may be used. The achieved results of an application of such procedures in identification of chaos or nonlinearity seem to be encouraging. One of the noise reduction methods is the Schreiber method, which, as it has been shown, is able to effectively reduce a noise added to time series generated by deterministic systems with chaotic dynamics. However, while analyzing real-world data, a researcher usually cannot be sure if the generating system is deterministic. Therefore, there is a risk that a noise reduction method will be applied to random data. In this paper, it has been shown that in situations where there in no clear evidence that investigated data are generated by a deterministic system, the Schreiber noise reduction method may negatively affect identification of time series. In the simulation carried out in this paper, the BDS test, the mutual information measure and the Pearson autocorrelation coefficient were used. The research has shown that an application of the Schreiber method may introduce spurious nonlinear dependencies to investigated data. As a result, random series may be misidentified as nonlinear.
Źródło:
Przegląd Statystyczny; 2011, 58, 1-2; 114-131
0033-2372
Pojawia się w:
Przegląd Statystyczny
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-3 z 3

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies