- Tytuł:
-
Identyfikacja systemów nieliniowych przy pomocy kernelowego algorytmu LMS z ograniczeniem zasobów
Identification of nonlinear systems using fixed budget kernel LMS algorithm - Autorzy:
-
Rzepka, D.
Otfinowski, P. - Powiązania:
- https://bibliotekanauki.pl/articles/408102.pdf
- Data publikacji:
- 2012
- Wydawca:
- Politechnika Lubelska. Wydawnictwo Politechniki Lubelskiej
- Tematy:
-
metody kernelowe
uczenie maszynowe
regresja nieliniowa
algorytm LMS
dobór wektorów nośnych
kernel methods
machine learning
nonlinear regression
least mean squares
pruning criterion - Opis:
-
W artykule zaprezentowano zastosowanie nowej, nieliniowej wersji algorytmu LMS wykorzystującej funkcje kernelowe do identyfikacji systemów nieliniowych. Aby ograniczyć ilość wektorów nośnych, będących niezbędnym elementem algorytmów opartych o metody kernelowe zastosowano kryterium selekcji. Nowy wektor wejściowy jest przyjmowany do słownika, a następnie w słowniku wyszukiwany i usuwany jest wektor, który ma najmniejszy wpływ na tworzony model nieliniowy. Przedstawiony przykład identyfikacji systemu nieliniowego potwierdza skuteczność porównywalną do algorytmów wykorzystujących większą liczbę wektorów nośnych.
In this paper a new version of kernel normalized least mean squares algorithm is applied to identification of nonlinear system. To maintain a fixed amount of support vectors, requisite for practical kernel-based algorithm, a pruning criterion is used. After admitting a new input vector to the dictionary, a least important entry is selected and discarder. A case of nonlinear system identification is presented, proving that algorithm performs well and it can maintain a performance comparable to state-of-the-art algorithms, using smaller number of support vectors. - Źródło:
-
Informatyka, Automatyka, Pomiary w Gospodarce i Ochronie Środowiska; 2012, 4b; 10-13
2083-0157
2391-6761 - Pojawia się w:
- Informatyka, Automatyka, Pomiary w Gospodarce i Ochronie Środowiska
- Dostawca treści:
- Biblioteka Nauki