Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "noise classification" wg kryterium: Temat


Wyświetlanie 1-5 z 5
Tytuł:
Occupational Exposure to Impulse Noise Associated With Shooting
Autorzy:
Lwow, F.
Jóźków, P.
Mędraś, M.
Powiązania:
https://bibliotekanauki.pl/articles/90390.pdf
Data publikacji:
2011
Wydawca:
Centralny Instytut Ochrony Pracy
Tematy:
weapon
noise classification
noise-induced hearing loss
prevention
Opis:
Shooting training is associated with exposure to a considerable amount of unique noise. We wanted to evaluate noise exposure during such training. Our observations especially apply to professional sport shooters, but they are also valid for shooting coaches/instructors. We collected acoustic signals in 10-, 25- and 50-m as well as open-air shooting ranges. The recorded material was analysed with orthogonal, adaptive parameterization by Shur. The mean duration of a single acoustic signal was 250–800 ms with the C-weighted sound peak pressure level of 138.2–165.2 dB. Shooters may be exposed to as many as 600–1350 acoustic impulses during a training unit. The actual load for the hearing organ of a professional shooter or a shooting coach is ~200 000 acoustic stimuli in a year-long training macrocycle. Orthogonal, adaptive parameterization by Shur makes safe scheduling of shooters’ training possible.
Źródło:
International Journal of Occupational Safety and Ergonomics; 2011, 17, 1; 69-77
1080-3548
Pojawia się w:
International Journal of Occupational Safety and Ergonomics
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Hierarchical Classification of Environmental Noise Sources Considering the Acoustic Signature of Vehicle Pass-Bys
Autorzy:
Valero, X.
Alias, F.
Powiązania:
https://bibliotekanauki.pl/articles/176616.pdf
Data publikacji:
2012
Wydawca:
Polska Akademia Nauk. Czytelnia Czasopism PAN
Tematy:
acoustic signature
environmental noise monitoring
Gaussian mixture models
hierarchical classification
mel-frequency cepstral coefficients (MFCC)
sound classification
traffic noise
vehicle pass-by
Opis:
This work is focused on the automatic recognition of environmental noise sources that affect humans’ health and quality of life, namely industrial, aircraft, railway and road traffic. However, the recognition of the latter, which have the largest influence on citizens’ daily lives, is still an open issue. Therefore, although considering all the aforementioned noise sources, this paper especially focuses on improving the recognition of road noise events by taking advantage of the perceived noise differences along the road vehicle pass-by (which may be divided into different phases: approaching, passing and receding). To that effect, a hierarchical classification scheme that considers these phases independently has been implemented. The proposed classification scheme yields an averaged classification accuracy of 92.5%, which is, in absolute terms, 3% higher than the baseline (a traditional flat classification scheme without hierarchical structure). In particular, it outperforms the baseline in the classification of light and heavy vehicles, yielding a classification accuracy 7% and 4% higher, respectively. Finally, listening tests are performed to compare the system performance with human recognition ability. The results reveal that, although an expert human listener can achieve higher recognition accuracy than the proposed system, the latter outperforms the non-trained listener in 10% in average.
Źródło:
Archives of Acoustics; 2012, 37, 4; 423-434
0137-5075
Pojawia się w:
Archives of Acoustics
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Analysing the impact on underwater noise of changes to the parameters of a ship’s machinery
Autorzy:
Buszman, Krystian
Powiązania:
https://bibliotekanauki.pl/articles/1573917.pdf
Data publikacji:
2020
Wydawca:
Politechnika Gdańska. Wydział Inżynierii Mechanicznej i Okrętownictwa
Tematy:
shipping noise
hydroacoustic passive measurement
narrowband
1/3-octave analysis
diagnosis
classification
Opis:
A ship moving over the surface of water generates disturbances that are perceived as noise, both in the air and under water. Due to its density, water is an excellent medium for transmitting acoustic waves over long distances. This article describes the impact of the settings of a ship’s machinery on the nature of the generated noise. Our analysis includes the frequency characteristics of the noise generated by the moving ship. Data were obtained using an underwater measurement system, and the measured objects were two ships moving on specific trajectories with certain machinery settings. The acquired data were analysed in the frequency domain to explore the possibilities of the acoustic classification of ships and diagnostics of source mechanisms.
Źródło:
Polish Maritime Research; 2020, 3; 176-181
1233-2585
Pojawia się w:
Polish Maritime Research
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Handling class label noise in medical pattern classification systems
Autorzy:
Sáez, J. A.
Krawczyk, B.
Woźniak, M.
Powiązania:
https://bibliotekanauki.pl/articles/333813.pdf
Data publikacji:
2015
Wydawca:
Uniwersytet Śląski. Wydział Informatyki i Nauki o Materiałach. Instytut Informatyki. Zakład Systemów Komputerowych
Tematy:
machine learning
pattern classification
class noise
noise filtering
decision support systems
uczenie maszynowe
klasyfikacja wzorców
filtracja zakłóceń
filtracja szumów
systemy wspomagania decyzji
Opis:
Pattern classification systems play an important role in medical decision support. They allow to automatize and speed-up the data analysis process, while being able to handle complex and massive amounts of information and discover new knowledge. However, their quality is based on the classification models built, which require a training set. In supervised classification we must supply class labels to each training sample, which is usually done by domain experts or some automatic systems. As both of these approaches cannot be deemed as flawless, there is a chance that the dataset is corrupted by class noise. In such a situation, class labels are wrongly assigned to objects, which may negatively affect the classifier training process and impair the classification performance. In this contribution, we analyze the usefulness of existing tools to deal with class noise, known as noise filtering methods, in the context of medical pattern classification. The experiments carried out on several real-world medical datasets prove the importance of noise filtering as a pre-processing step and its beneficial influence on the obtained classification accuracy.
Źródło:
Journal of Medical Informatics & Technologies; 2015, 24; 123-130
1642-6037
Pojawia się w:
Journal of Medical Informatics & Technologies
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Smart Substation Network Fault Classification Based on a Hybrid Optimization Algorithm
Autorzy:
Xia, Xin
Liu, Xiaofeng
Lou, Jichao
Powiązania:
https://bibliotekanauki.pl/articles/227220.pdf
Data publikacji:
2019
Wydawca:
Polska Akademia Nauk. Czytelnia Czasopism PAN
Tematy:
smart substation
network fault classification
improved separation interval method (ISIM)
support vector
machine (SVM)
Anti-noise processing (ANP)
Opis:
Accurate network fault diagnosis in smart substations is key to strengthening grid security. To solve fault classification problems and enhance classification accuracy, we propose a hybrid optimization algorithm consisting of three parts: anti-noise processing (ANP), an improved separation interval method (ISIM), and a genetic algorithm-particle swarm optimization (GA-PSO) method. ANP cleans out the outliers and noise in the dataset. ISIM uses a support vector machine (SVM) architecture to optimize SVM kernel parameters. Finally, we propose the GA-PSO algorithm, which combines the advantages of both genetic and particle swarm optimization algorithms to optimize the penalty parameter. The experimental results show that our proposed hybrid optimization algorithm enhances the classification accuracy of smart substation network faults and shows stronger performance compared with existing methods.
Źródło:
International Journal of Electronics and Telecommunications; 2019, 65, 4; 657-663
2300-1933
Pojawia się w:
International Journal of Electronics and Telecommunications
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-5 z 5

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies