Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "neurogenesis" wg kryterium: Temat


Wyświetlanie 1-7 z 7
Tytuł:
Endocannabinoid system and cannabinoids in neurogenesis - new opportunities for neurological treatment? Reports from experimental studies
Autorzy:
Drab, Aleksandra
Zagaja, Mirosław
Haratym-Maj, Agnieszka
Łuszczki, Jarogniew Jacek
Andres-Mach, Marta
Powiązania:
https://bibliotekanauki.pl/articles/972633.pdf
Data publikacji:
2017
Wydawca:
Instytut Medycyny Wsi
Tematy:
neurogenesis
cannabinoids
endocannabinoid system
Opis:
Neurogenesis is one of the most important phenomenona affecting human life. This process consists of proliferation, migration and differentiation of neuroblasts and synaptic integrations of newborn neurons. Proliferation of new cells continues into old age, also in humans, although the most extensive process of cell formation occurs during the prenatal period. It is possible to distinguish two regions in the brain responsible for neurogenesis: the dentate gyrus (DG) of the hippocampus and the sub-ventricular zone (SVZ). Hippocampal neurogenesis is very sensitive to various physiological and pathological stimuli. The functional integration of the newly-born dentate granule cells into hippocampal circuitry, and their ability to mediate long-term potentiation in DG, has led to the hypothesis that neurogenesis in the adult brain may play a key role in learning and memory function, as well as cognitive dysfunction in some diseases. Brain disorders, such as neurodegenerative diseases or traumatic brain injuries, significantly affect migration, proliferation and differentiation of neural cells. In searching for the best neurological drugs protecting neuronal cells, stimulating neurogenesis, while also developing no side-effects, endocannabinoids proved to be a strong group of substances having many beneficial properties. Therefore, the latest data is reviewed of the various experimental studies concerning the analysis of the most commonly studied cannabinoids and their impact on neurogenesis.
Źródło:
Journal of Pre-Clinical and Clinical Research; 2017, 11, 1; 76-80
1898-2395
Pojawia się w:
Journal of Pre-Clinical and Clinical Research
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Increased neurogenesis after ACEA and levetiracetam treatment in mouse pilocarpine model of epilepsy
Autorzy:
Zagaja, Mirosław
Szewczyk, Aleksandra
Haratym-Maj, Agnieszka
Rola, Radosław
Maj, Maciej
Łuszczki, Jarogniew J.
Anders-Mach, Marta
Powiązania:
https://bibliotekanauki.pl/articles/972512.pdf
Data publikacji:
2017
Wydawca:
Instytut Medycyny Wsi
Tematy:
neurogenesis
neurons
astrocytes
pilocarpine
ACEA
Levetiracetam
Opis:
Introduction and objectives. The aim of the study was to asses the impact of long-term therapy with the second generation antiepileptic drug levetiracetam (LEV) with arachidonyl-2’-chloroethylamide (ACEA), a highly selective cannabinoid CB1 receptor agoniston the process of neurogenesis in a mouse pilocarpine model of epilepsy (PILO). Additionally, a relationship was established between the treatment with ACEA in combination with LEV, and hippocampal neurogenesis in mouse PILO brain. Materials and method. All experiments were performed on adolescent male CB57/BL mice injected i.p. with LEV (10 mg/kg), ACEA (10 mg/kg) and PMSF (30 mg/kg) (phenylmethylsulfonyl fluoride — a substance protecting ACEA against degradation by the fatty-acid amidohydrolase), pilocarpine (PILO, a single dose 290 mg/kg) and methylscopolamine (30 min before PILO to stop the peripheral cholinergic effects of the pilocarpine, 1 mg/kg). The process of neurogenesis was evaluated after10 days treatment with LEV and ACEA. Results. Obtained results indicated that the combinations of ACEA+PMSF+LEV and ACEA +PMSF increased the total number of total newborn cells compared to the control. Moreover, ACEA+PMSF administered alone and in combination with LEV had a significant impact on neurogenesis increasing the total number of newborn neurons compared to the control group. Neither LEV nor PMSF had a significant impact on the number of proliferating cells and newborn neurons when compared to the control PILO group. In turn, LEV administered alone decreased significantly the number of astrocytes. However, ACEA+PMSF has demonstrated significant increase of astrocytes compare to control mice. Conclusions. These data provide substantial evidence that the combination of LEV+ACEA significantly increases the level of newborn neurons in the PILO dentate subgranular zone.
Źródło:
Journal of Pre-Clinical and Clinical Research; 2017, 11, 2; 136-141
1898-2395
Pojawia się w:
Journal of Pre-Clinical and Clinical Research
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Current views on neuroplasticity: what is new and what is old?
Autorzy:
Kaczmarek, Bożydar L.J
Powiązania:
https://bibliotekanauki.pl/articles/2106004.pdf
Data publikacji:
2020-02-26
Wydawca:
Fundacja Edukacji Medycznej, Promocji Zdrowia, Sztuki i Kultury Ars Medica
Tematy:
research paradigms
neuroplasticity
glial plasticity
mental force
neurogenesis
Opis:
The main aim of the paper is to show that many previously forgotten discoveries within the field of neuroscience own their rediscovery and renaissance to the refinement of tools provided by the technological advances. Most spectacular is the advancement of brain imaging techniques, which provide hard data that support for evidence for previously neglected presumptions and ideas. Neuroplasticity is an example of such a long ignored historical discovery. One reason for that neglect is that it stood in contradiction to beliefs and theories prevailing at the first half of the twenties century. The idea of neuronal plasticity is not disputed any longer since it has found confirmation not only in a dramatic development of neuroimaging but also in the advancement of neurobiology. Most authors concentrate upon neuronal plasticity, recent studies, however, have produced a wealth of information regarding neurogenesis, in which astrocytes have proved to play a significant role. The significance of adult neurogenesis for learning and memory and for treatment of depression is outlined. Moreover, it was observed that neuroplasticity benefits patients suffering from obsessive-compulsive disorder (OCD) who undergo effective, evidence-based treatment. Convincing examples of brain plasticity brings also clinical practice, which often unveils the appearance of hitherto hidden artistic abilities in people who have suffered from brain damage. In addition, the possibilities of altering the brain functions by mental force alone are discussed. Thus, the paper reveals that many “controversial” ideas were confirmed by contemporary studies forcing changes in a traditional view on brain works.
Źródło:
Acta Neuropsychologica; 2020, 18(1); 1-14
1730-7503
2084-4298
Pojawia się w:
Acta Neuropsychologica
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Neuroprotekcyjne właściwości związków pochodzenia roślinnego: triterpeny pentacykliczne
Neuroprotective properties of compounds of vegetable origin: pentacyclic triterpenes
Autorzy:
Orłowska-Majdak, Monika
Powiązania:
https://bibliotekanauki.pl/articles/944179.pdf
Data publikacji:
2014
Wydawca:
Medical Communications
Tematy:
neurogenesis
neuroprotection
pentacyclic triterpenes
phytotherapy
synaptic plasticity
fitoterapia
neurogeneza
neuroprotekcja
plastyczność synaptyczna
triterpeny pentacykliczne
Opis:
The brain is a structure of great variability during the ontogenetic human life. In the first period of life, changes in its structure and activities are due to the processes of development and maturation. Then, due to the remarkable synaptic plasticity, individual brain centres adapt to the requirements of the environment in which the man lives, and his lifestyle. After the age of 40 years, apoptosis, the process of programmed cell death of neurons begins. In a state of disease, the process of necrosis or aponecrosis may cause additional destruction of neurons. The process of neurogenesis based on local or transplanted brain stem cells has a repairing effect in the damaged structures, but may be also associated with psychiatric and neurological diseases. Underlying processes of neuroprotection include antioxidant, anti-inflammatory, anti-apoptotic processes and antidestructive action of Ca. Phytotherapy based on compounds of plant origin has been found to have a supporting function in neuroprotection. In recent years, particular attention is paid to neuroprotective properties of pentacyclic triterpenes and their derivatives. The article presents neuroprotective properties of ursolic, oleanolic, maslinic, asiatic, betulinic, boswellic acid and triterpene saponins from Bupleurum and Panax ginseng. Ginseng saponins additionally increase neurogenesis in the brain. The possibility of using these triterpene compounds in the treatment of many neurological and psychiatric diseases has been suggested. However, it should be pointed out that the direction of their action may depend on the dosage, they may have a different effect on various types of neurons, and they can interact with other drugs used simultaneously. Most of the experiments using triterpenes were performed on animals or cell cultures. Further studies in humans are required to further determine triterpene effect in humans.
Ludzki mózg to struktura wykazująca ogromną zmienność w ciągu życia osobniczego. W pierwszym okresie zmiany budowy i czynności spowodowane są procesami rozwoju i dojrzewania. Następnie, dzięki niezwykłej plastyczności synaptycznej, poszczególne ośrodki mózgu przystosowują się do wymagań środowiska, w jakim człowiek funkcjonuje, i do stylu jego życia. Po 40. roku życia włącza się proces zaprogramowanej śmierci neuronów, czyli apoptozy, a w stanie choroby neurony mogą ginąć w procesie nekrozy lub aponekrozy. Neurogeneza na bazie miejscowych albo transplantowanych komórek macierzystych mózgu pełni funkcję naprawczą w powstałych uszkodzeniach, ale może także mieć związek z chorobami psychicznymi i neurologicznymi. U podstaw neuroprotekcji leżą procesy antyoksydacyjne, przeciwzapalne, antyapoptotyczne i przeciwdziałające destrukcyjnemu działaniu jonów wapnia. Wspierającą funkcję w działaniu neuroprotekcyjnym mogą mieć związki pochodzenia roślinnego, podawane w ramach fitoterapii. W ostatnich latach zwrócono uwagę na neuroprotekcyjne właściwości pentacyklicznych triterpenów i ich pochodnych. W pracy omówiono właściwości neuroprotekcyjne kwasu ursolowego, oleanolowego, maslinowego, asjatowego, betulinowego, bosweliowego oraz saponin triterpenowych pozyskiwanych z roślin Bupleurum i Panax ginseng. Saponiny ginseng dodatkowo nasilają neurogenezę w mózgu. Sugeruje się potencjał stosowania wymienionych związków w terapii wielu chorób neurologicznych i psychicznych – z kilkoma zastrzeżeniami: 1) kierunek działania może zależeć od dawki; 2) związki te mogą różnie działać na neurony różnych rodzajów; 3) mogą istnieć niekorzystne interakcje z innymi lekami stosowanymi równocześnie. Większość doświadczeń z użyciem triterpenów wykonano na zwierzętach bądź w hodowlach komórkowych, zagadnienie wymaga więc dalszych badań na ludziach.
Źródło:
Psychiatria i Psychologia Kliniczna; 2014, 14, 4; 284-289
1644-6313
2451-0645
Pojawia się w:
Psychiatria i Psychologia Kliniczna
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Rola białka PrPc w procesie różnicowania neuralnego in vitro i neurogenezy
The role of PrPc protein in process of neural differentiation in vitro and neurogenesis
Autorzy:
Witusik, Monika
Liberski, Paweł P.
Powiązania:
https://bibliotekanauki.pl/articles/1059326.pdf
Data publikacji:
2007
Wydawca:
Medical Communications
Tematy:
PRNP
PrP
PrPc
glial lineage
neural differentiation
neurogenesis
neuronal lineage
linia glejowa
linia neuronalna
neurogeneza
różnicowanie neuralne
Opis:
The phenomena of neural differentiation in vitro and neurogenesis in vivo involve a numerous cellular proteins to create the differentiation signaling pathways. The role of the cellular isoform of prion protein PrPc – a product of the PRNP gene, seems also to be connected with a process of neural differentiation. The primary investigations in this field revealed increase of PRNP gene expression during both neurogenesis and neural differentiation in vitro; however, the majority of results were obtained with the use of animal models or cancer- derived cell lines. The latest experiments using neural stem/progenitor cells as an experimental models, seem to confirm the previous results, suggesting participation of PrPc in a neural differentiation. On the basis of the further analyses, PrPc appears to be a part of differentiation signaling pathways. Moreover, PrPc activity may contribute to acquire and maintain the functions specific for neurons. Surprisingly, the prion protein- -deficient cells are still able to differentiate into neurons, although the process of differentiation is delayed. The controversy nevertheless persists about expression of PRNP gene during glial cells differentiation that is reflected in inconsistent published results, beginning with hypothesis postulating the importance of “astrocytic” PrPc for neural differentiation, ending with data presenting no PrPc expression in glial lineage. Studying the literature data does not allow to create the uniform PRNP expression pattern during neural differentiation. It rather seems to be an individual feature, which should be considered in the broader context of particular cell type and the specificity of metabolic processes accompanying neural differentiation in vitro or neurogenesis in vivo.
Różnicowanie neuralne in vitro lub proces neurogenezy in vivo to zjawiska angażujące szereg białek komórkowych, będących ogniwami szlaków sygnalizacyjnych sterujących tymi procesami. Białkiem, którego funkcja również wydaje się związana z procesem różnicowania, jest białko prionu, izoforma komórkowa PrP1 - produkt genu PRNP. Pionierskie badania w tej dziedzinie ujawniły wzrost poziomu ekspresji genu PRNf podczas neurogenezy czy też różnicowania neuronalnego in vitro, aczkolwiek większość wyników uzyskane z wykorzystaniem modeli neurogenezy zwierząt lub linii komórkowych pochodzenia nowotworowego. Najnowsze badania, w których jako model eksperymentalny wykorzystywane są neuralne komórki macierzyste/progenitorowe, potwierdzają zarysowany uprzednio obraz, sugerując udział PrPc w różnicowaniu neuronalnym. Kolejne analizy, będące próbą sprecyzowania funkcji PrPc w tym zjawisku, ukazują to białko jako potencjalne ogniwo szlaków sygnalizacyjnych sterujących procesami różnicowania. Co więcej, wydaje się, iż PrPc jest białkiem, którego aktywność związana jest z nabywaniem oraz realizowaniem przez komórki funkcji specyficznych dla neuronów. Komórki pozbawione białka PrPc nadal są jednak zdolne do różnicowania neuronalnego, chociaż proces ten jest opóźniony. Kwestią kontrowersyjną jest natomiast ekspresja genu PRNP w trakcie różnicowania komórek glejowych, czego dowodem jest brak spójnych doniesień, poczynając od danych sugerujących, iż obecność PrPc w astrocytach jest niezbędna dla prawidłowego przebiegu różnicowania neuralnego, na wynikach definitywnie wykluczających obecność PrPc w linii glejowej kończąc. Analiza danych z literatury nie pozwala więc stworzyć uniwersalnego wzorca ekspresji genu PRNP w procesie różnicowania neuralnego. Wydaje się, iż jest to cecha, którą należy rozpatrywać indywidualnie dla danego typu komórek oraz konkretnego procesu metabolicznego, towarzyszącego zjawiskom tak złożonym, jak proces różnicowania neuralnego in vitro czy neurogeneza in vivo.
Źródło:
Aktualności Neurologiczne; 2007, 7, 3; 188-194
1641-9227
2451-0696
Pojawia się w:
Aktualności Neurologiczne
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Komórki macierzyste w neurologii
Stem cells in neurology
Autorzy:
Gójska, Anna
Powiązania:
https://bibliotekanauki.pl/articles/1058918.pdf
Data publikacji:
2008
Wydawca:
Medical Communications
Tematy:
cell therapy
nervous system
neurogenesis
progenitor cells
stem cells
komórki macierzyste
komórki progenitorowe
neurogeneza
terapia komórkowa
układ nerwowy
Opis:
Human brain is a very complex biological system considering its cytoarchitecture, neuronal network, localisation of functional regions and integration. Until second half of the XX century it was believed that CNS is deprived of regenerative processes. At present there are many studies that confirm constant formation of new neurones in the human brain. However, this process of cell exchange is far less effective in comparison with the regeneration and functional renewal of other tissues of our organism. In the following article we present current data on local neurogenesis in the adult brain. There are at least 3 regions of CNS where cell proliferembrioation takes place: subventricular zone – SVZ, subgranular zone – SGZ and posterior periventricular area – PPv. It has been estimated that single radial glial cell, which is the progenitor of cells residing in the aforementioned regions of the brain, would be enough to form 4×107 of new brains. Other tissues of our organism could become another source of stem cells for brain regeneration. This solution is tempting when we consider a theory of peripheral blood stem cells that reside in different organ niches. Injured tissue produces higher amounts of chemokines such as SDF-1 or LIF that causes increased migration of stem cells towards the “calling- for-help” organ. The last part of the article presents the progress that has been made in regeneration therapies of certain neurological disorders: cerebral stroke, Parkinson’s disease, multiple sclerosis, spinal cord injuries, amyotrophic lateral sclerosis, Huntigton’s disease and Alzheimer’s disease.
Mózg człowieka jest bardzo skomplikowanym biologicznym systemem pod względem cytoarchitektury, sieci neuronalnej, lokalizacji ośrodków funkcjonalnych oraz integracji. Do drugiej połowy XX wieku panował pogląd, że po okresie rozwoju OUN jest pozbawiony jakiejkolwiek zdolności regeneracyjnej. Istnieje obecnie wiele badań potwierdzających fakt, iż w dorosłym mózgu ludzi ma miejsce ciągły proces tworzenia się nowych neuronów, chociaż oczywiście proces wymiany komórek ośrodkowego układu nerwowego prezentuje się nie najlepiej w porównaniu z regeneracją i funkcjonalną odnową, które mają miejsce w innych organach naszego organizmu. W poniższym artykule przedstawione zostały aktualne dane dotyczące miejscowej neurogenezy w dojrzałym mózgu. W mózgu człowieka znajdują się przynajmniej 3 obszary, gdzie mają miejsce procesy proliferacji komórkowej: strefa przykomorowa (subventricularzone, SVZ), strefa przyziarnista (subgranularzone, SGZ), oraz tylna strefa okołokomorowa (posterior periventricular area, PPv). Wyliczono, że pojedyncza komórka gleju radialnego, której mitotyczni potomkowie rezydują w wymienionych strefach rozrodczych, wystarczyłaby do utworzenia 4x107 mózgów. Innym źródłem odnowy dla mózgu mogłyby stać się komórki macierzyste pozyskiwane z innych tkanek naszego organizmu. Takie rozwiązanie znajduje swoje uzasadnienie w ramach teorii o krążących w krwi obwodowej komórkach macierzystych zasiedlających poszczególne nisze narządowe. Znacznie upraszczając, uszkodzony narząd wydziela zwiększoną ilość chemoatraktantów, takich jak SDF-1 czy LIF, i tym przyciąga do siebie zwiększoną ilość komórek macierzystych. W dalszej części artykułu przedstawiono postęp, jaki dokonał się w terapiach regeneracyjnych w przypadku niektórych schorzeń neurologicznych: udaru mózgu, choroby Parkinsona, stwardnienia rozsianego, urazów rdzenia, stwardnienia zanikowego bocznego, choroby Huntingtona oraz choroby Alzheimera.
Źródło:
Aktualności Neurologiczne; 2008, 8, 1; 39-48
1641-9227
2451-0696
Pojawia się w:
Aktualności Neurologiczne
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Próby wykorzystania komórek macierzystych w terapii wybranych chorób układu nerwowego
The attempts to use stem cells in the therapy of selected disorders of the nervous system
Autorzy:
Kacperska, Magdalena Justyna
Książek-Winiarek, Dominika
Jastrzębski, Karol
Głąbiński, Andrzej
Powiązania:
https://bibliotekanauki.pl/articles/1053521.pdf
Data publikacji:
2013
Wydawca:
Medical Communications
Tematy:
neurogeneza
komórki macierzyste
ośrodkowy układ nerwowy
regeneracja
pozyskiwanie komórek
macierzystych
neurogenesis
stem cells
central nervous system
regeneration
stem cell isolation
Opis:
Until the second half of the twentieth century there was a view that central nervous system, after its evolution, was unable to any further regeneration. Moreover, it was said that neurogenesis (the development of nerve tissues) of an adult (postnatal) did not exist. However, in the course of time, some findings indicated that the process of new neurons was continuously formed in mature brains of primates as well as human beings. A breakthrough discovery of active, proliferating neural stem cells existing in a fully developed brain has given grave possibilities to modern neuroscience. The process of neurogenesis among adults is an extraordinary phenomenon. It plays an important role in a few processes. There is also evidence that neurogenesis may help answer the hippocampus to stress and prevent any onset of depression. Nowadays, it is identified to be three areas in the adult mammalian brain where processes of cell proliferation take place. These areas are: subventricular zone (SVZ), subgranular zone (SGZ) and posterior periventricular area (PPv). By excessive formating new tissues circulatory system is the opposite to the nervous system. Although the latter is the complex biological system with its cytostructure, neural network, the location of the functional centers and its integration it has a poor ability to regeneration. Because of the complexity of the central nervous system a few disorders can be distinguished such as: multiple sclerosis, ischemic stroke, Alzheimer’s disease, Parkinson’s disease or brain tumors. At present stem cells are matters of interest to scientists. Not only are stem cells being observed by researchers but also they are to be conducted studies on. The end result of these findings could be primarily usable for CNS regenerative therapies.
Do drugiej połowy XX wieku panował pogląd, że po okresie rozwoju ośrodkowy układ nerwowy pozbawiony jest jakiejkolwiek zdolności regeneracyjnej, a neurogeneza (neurogenesis, „narodziny neuronów”) wieku dorosłego (postnatalnego) z całą pewnością nie istnieje. Odkrycie w dojrzałym mózgu aktywnych proliferacyjnie nerwowych komórek macierzystych (neural stem cells, NSCs) otworzyło nowe możliwości między innymi dla neurologii. Proces neurogenezy osób dorosłych jest unikatowym zjawiskiem i odgrywa znaczącą rolę w różnych procesach. Wiele obserwacji wskazuje także na to, że proces neurogenezy może wspomagać odpowiedź formacji hipokampa na stres i zapobiegać między innymi wystąpieniu depresji. W chwili obecnej w mózgu dorosłych ssaków zidentyfikowano trzy obszary, gdzie mają miejsce procesy proliferacji komórkowej. Są to: strefa przykomorowa (subventricular zone, SVZ), strefa przyziarnista (subgranular zone, SGZ) oraz tylna strefa okołokomorowa (posterior periventricular area, PPv). Tkanką podlegającą bardzo sprawnej regeneracji jest układ krwionośny. Jest to przeciwieństwo układu nerwowego, który przez to, że jest bardzo skomplikowanym systemem biologicznym pod względem cytoarchitektury, sieci neuronalnej, lokalizacji ośrodków funkcjonalnych oraz integracji, posiada słabą zdolność do regeneracji. Zaburzenia tak złożonego systemu są widoczne w takich schorzeniach ośrodkowego układu nerwowego, jak: stwardnienie rozsiane, udar niedokrwienny mózgu, choroba Alzheimera, choroba Parkinsona, stwardnienie zanikowe boczne czy guzy mózgu. Naukowcy nie poprzestali na identyfikacji komórek macierzystych w mózgu, prowadzonych jest obecnie wiele badań poświęconych potencjalnemu wykorzystaniu komórek macierzystych o różnym pochodzeniu w nowych terapiach regeneracyjnych chorób ośrodkowego układu nerwowego.
Źródło:
Aktualności Neurologiczne; 2013, 13, 2; 145-156
1641-9227
2451-0696
Pojawia się w:
Aktualności Neurologiczne
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-7 z 7

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies