Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "neuro-fuzzy" wg kryterium: Temat


Tytuł:
Organization of security control of wireless telecommunication network based on fuzzy networks
Autorzy:
Aleksander, M. B.
Karpinskyi, V.
Khlaponin, Y.
Yudin, O.
Powiązania:
https://bibliotekanauki.pl/articles/114432.pdf
Data publikacji:
2016
Wydawca:
Stowarzyszenie Inżynierów i Techników Mechaników Polskich
Tematy:
linguistic variable
neuro-fuzzy network
neural network
wireless network
Opis:
The problem solution of security control of wireless computer network nodes, which is based on the use of the apparatus of fuzzy sets is presented in this article. The approach used in the paper aims to an automation that will improve the efficiency of control of the nodes and operations of a network administrator. The approach allows forming a system of security control of the wireless computer network based on neuro-fuzzy (hybrid) network, which is characterized by high adaptability, ease use, the ability to identify better the sequence of the analysis of vulnerabilities in the wireless computer network nodes. The feature of the proposed approach takes the dynamic nature of the wireless computer network into account.
Źródło:
Measurement Automation Monitoring; 2016, 62, 10; 341-344
2450-2855
Pojawia się w:
Measurement Automation Monitoring
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Beta neuro-fuzzy systems
Autorzy:
Alimi, A. M.
Powiązania:
https://bibliotekanauki.pl/articles/1931568.pdf
Data publikacji:
2003
Wydawca:
Politechnika Gdańska
Tematy:
beta function
kernel based neural networks
Sugeno fuzzy model
neuro-fuzzy systems
universal approximation property
learning algorithms
incremental learning
Opis:
In this paper we present the Beta function and its main properties. A key feature of the Beta function, which is given by the central-limit theorem, is also given. We then introduce a new category of neural networks based on a new kernel: the Beta function. Next, we investigate the use of Beta fuzzy basis functions for the design of fuzzy logic systems. The functional equivalence between Beta-based function neural networks and Beta fuzzy logic systems is then shown with the introduction of Beta neuro-fuzzy systems. By using the SW theorem and expanding the output of the Beta neuro-fuzzy system into a series of Beta fuzzy-based functions, we prove that one can uniformly approximate any real continuous function on a compact set to any arbitrary accuracy. Finally, a learning algorithm of the Beta neuro-fuzzy system is described and illustrated with numerical examples.
Źródło:
TASK Quarterly. Scientific Bulletin of Academic Computer Centre in Gdansk; 2003, 7, 1; 23-41
1428-6394
Pojawia się w:
TASK Quarterly. Scientific Bulletin of Academic Computer Centre in Gdansk
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Neuro-fuzzy modelling of blending process in cement plant
Autorzy:
Araromi, D O
Odewale, S A
Hamed, J O
Powiązania:
https://bibliotekanauki.pl/articles/102547.pdf
Data publikacji:
2015
Wydawca:
Stowarzyszenie Inżynierów i Techników Mechaników Polskich
Tematy:
neuro-fuzzy
blending
carbonate content
raw mix
Opis:
The profitability of a cement plant depends largely on the efficient operation of the blending stage, therefore, there is a need to control the process at the blending stage in order to maintain the chemical composition of the raw mix near or at the desired value with minimum variance despite variation in the raw material composition. In this work, neuro-fuzzy model is developed for a dynamic behaviour of the system to predict the total carbonate content in the raw mix at different clay feed rates. The data used for parameter estimation and model validation was obtained from one of the cement plants in Nigeria. The data was pre-processed to remove outliers and filtered using smoothening technique in order to reveal its dynamic nature. Autoregressive exogenous (ARX) model was developed for comparison purpose. ARX model gave high root mean square error (RMSE) of 5.408 and 4.0199 for training and validation respectively. Poor fit resulting from ARX model is an indication of nonlinear nature of the process. However, both visual and statistical analyses on neuro-fuzzy (ANFIS) model gave a far better result. RMSE of training and validation are 0.28167 and 0.7436 respectively, and the sum of square error (SSE) and R-square are 39.6692 and 0.9969 respectively. All these are an indication of good performance of ANFIS model. This model can be used for control design of the process.
Źródło:
Advances in Science and Technology. Research Journal; 2015, 9, 28; 27-33
2299-8624
Pojawia się w:
Advances in Science and Technology. Research Journal
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Prediction of backbreak in open pit blasting by Adaptive Neuro-Fuzzy Inference System
Prognozowanie spękań skał przy pracach strzałowych w kopalniach odkrywkowych przy użyciu metod neuronowych i wnioskowania rozmytego (ANFIS) zastosowanych w modelu adaptywnym
Autorzy:
Bazzazi, A. A.
Esmaeili, M.
Powiązania:
https://bibliotekanauki.pl/articles/219044.pdf
Data publikacji:
2012
Wydawca:
Polska Akademia Nauk. Czytelnia Czasopism PAN
Tematy:
prace strzałowe
pękanie skał
system wnioskowania wykorzystujący elementy sieci neuronowych i logiki rozmytej
kopalnia rud żelaza Sangan
blasting
backbreak
adaptive neuro-fuzzy inference system
Sangan iron mine
Opis:
Adaptive neuro-fuzzy inference system (ANFIS) is powerful model in solving complex problems. Since ANFIS has the potential of solving nonlinear problem and can easily achieve the input-output mapping, it is perfect to be used for solving the predicting problem. Backbreak is one of the undesirable effects of blasting operations causing instability in mine walls, falling down the machinery, improper fragmentation and reduction in efficiency of drilling. In this paper, ANFIS was applied to predict backbreak in Sangan iron mine of Iran. The performance of the model was assessed through the root mean squared error (RMSE), the variance account for (VAF) and the correlation coefficient (R2) computed from the measured of backbreak and model-predicted values of the dependent variables. The RMSE, VAF, R2 indices were calculated 0.6, 0.94 and 0.95 for ANFIS model. As results, these indices revealed that the ANFIS model has very good prediction performance.
Adaptywny system wnioskowania wykorzystujący elementy sieci neuronowych i logiki rozmytej (ANFIS) stanowi potężny narzędzie do rozwiązywania złożonych problemów. Ponieważ model ANFIS może być wykorzystywany do rozwiązywania problemów nieliniowych i umożliwia wygodne przedstawienie problemu w formie: wejście - wyjście, jest idealnym narzędziem do rozwiązywania problemów związanych z prognozowaniem. Pękanie skał w odkrywce jest jednym z niekorzystnych skutków prowadzenia prac strzałowych, powoduje niestabilność ścian, uszkodzenia maszyn i urządzeń, nieodpowiednią fragmentację skał oraz prowadzi do obniżenia efektywności wierceń. W pracy przedstawiono zastosowanie systemu ANFIS do prognozowania pękań skał w kopalni rud żelaza w Sangan (Iran). Działanie modelu zbadano na podstawie wartości błędu średniokwadratowego (RMSE), wariancji (VAF) i współczynnika korelacji (R2) obliczonego na podstawie pomiarów pęknięć skał i wartości uzyskanych z modelowania. Wartości wskaźników RMSE, VAF i R2 obliczonych przy użyciu modelu ANFIS wynoszą odpowiednio 0.6, 0.94 i 0.95. Wielkości te wyraźnie potwierdzają wysoką skuteczność modelu.
Źródło:
Archives of Mining Sciences; 2012, 57, 4; 933-943
0860-7001
Pojawia się w:
Archives of Mining Sciences
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Neuro-fuzzy control design of processes in chemical technologies
Autorzy:
Blahová, L.
Dvoran, J.
Kmeťová, J.
Powiązania:
https://bibliotekanauki.pl/articles/229832.pdf
Data publikacji:
2012
Wydawca:
Polska Akademia Nauk. Czytelnia Czasopism PAN
Tematy:
neuro-fuzzy control
chemical reactor
neural predictive controller
ANFIS
laboratory process
Opis:
The paper presents design of neuro-fuzzy control and its application in chemical technologies. Our approach to neuro-fuzzy control is a combination of the neural predictive controller and the neuro-fuzzy controller (Adaptive Network-based Fuzzy Inference System - ANFIS). These controllers work in parallel. The output of ANFIS adjusts the output of the neural predictive controller to enhance the control performance. Such design of an intelligent control system is applied to control of the continuous stirred tank reactor and laboratory mixing process.
Źródło:
Archives of Control Sciences; 2012, 22, 2; 233-250
1230-2384
Pojawia się w:
Archives of Control Sciences
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
A hybrid cascade neuro-fuzzy network with pools of extended neo-fuzzy neurons and its deep learning
Autorzy:
Bodyanskiy, Yevgeniy V.
Tyshchenko, Oleksii K.
Powiązania:
https://bibliotekanauki.pl/articles/330840.pdf
Data publikacji:
2019
Wydawca:
Uniwersytet Zielonogórski. Oficyna Wydawnicza
Tematy:
data stream
membership function
training procedure
adaptive neuro-fuzzy system
extended neo-fuzzy neuron
strumień danych
funkcja przynależności
neuronowo rozmyty układ adaptacyjny
Opis:
This research contribution instantiates a framework of a hybrid cascade neural network based on the application of a specific sort of neo-fuzzy elements and a new peculiar adaptive training rule. The main trait of the offered system is its competence to continue intensifying its cascades until the required accuracy is gained. A distinctive rapid training procedure is also covered for this case that offers the possibility to operate with non-stationary data streams in an attempt to provide online training of multiple parametric variables. A new training criterion is examined for handling non-stationary objects. Additionally, there is always an occasion to set up (increase) the inference order and the number of membership relations inside the extended neo-fuzzy neuron.
Źródło:
International Journal of Applied Mathematics and Computer Science; 2019, 29, 3; 477-488
1641-876X
2083-8492
Pojawia się w:
International Journal of Applied Mathematics and Computer Science
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
New Methods for Designing and Reduction of Neuro-Fuzzy Systems
Autorzy:
Cpałka, K.
Powiązania:
https://bibliotekanauki.pl/articles/108790.pdf
Data publikacji:
2010
Wydawca:
Społeczna Akademia Nauk w Łodzi
Tematy:
algorithm of best global eliminations
algorithm of best local eliminations
consecutive eliminations algorithm
consecutive mergings algorithm
interpretability
logical approach
neuro-fuzzy system
Opis:
In the paper, we propose novel methods for designing and reduction of neuro-fuzzy systems without the deterioration of their accuracy. The reduction and merging algorithms gradually eliminate inputs, rules, antecedents, and the number of discretization points of integrals in the center of area defuzzification method. Our algorithms have been tested using well known classification benchmark.
Źródło:
Journal of Applied Computer Science Methods; 2010, 2 No. 2; 113-126
1689-9636
Pojawia się w:
Journal of Applied Computer Science Methods
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Extraction of fuzzy rules using deterministic annealing integrated with ε-insensitive learning
Autorzy:
Czabański, R.
Powiązania:
https://bibliotekanauki.pl/articles/908395.pdf
Data publikacji:
2006
Wydawca:
Uniwersytet Zielonogórski. Oficyna Wydawnicza
Tematy:
system rozmyty
sieć neuronowa
sieć neuronowa rozmyta
ekstrakcja reguł
fuzzy systems
neural networks
neuro-fuzzy systems
rules extraction
deterministic annealing
Opis:
A new method of parameter estimation for an artificial neural network inference system based on a logical interpretation of fuzzy if-then rules (ANBLIR) is presented. The novelty of the learning algorithm consists in the application of a deterministic annealing method integrated with ε-insensitive learning. In order to decrease the computational burden of the learning procedure, a deterministic annealing method with a “freezing” phase and ε-insensitive learning by solving a system of linear inequalities are applied. This method yields an improved neuro-fuzzy modeling quality in the sense of an increase in the generalization ability and robustness to outliers. To show the advantages of the proposed algorithm, two examples of its application concerning benchmark problems of identification and prediction are considered.
Źródło:
International Journal of Applied Mathematics and Computer Science; 2006, 16, 3; 357-372
1641-876X
2083-8492
Pojawia się w:
International Journal of Applied Mathematics and Computer Science
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Neuro-fuzzy modelling based on a deterministic annealing approach
Autorzy:
Czabański, R.
Powiązania:
https://bibliotekanauki.pl/articles/908442.pdf
Data publikacji:
2005
Wydawca:
Uniwersytet Zielonogórski. Oficyna Wydawnicza
Tematy:
system rozmyty
sieć neuronowa
ekstrakcja reguł
fuzzy systems
neural networks
neuro-fuzzy systems
rules extraction
deterministic annealing
prediction
Opis:
This paper introduces a new learning algorithm for artificial neural networks, based on a fuzzy inference system ANBLIR. It is a computationally effective neuro-fuzzy system with parametrized fuzzy sets in the consequent parts of fuzzy if-then rules, which uses a conjunctive as well as a logical interpretation of those rules. In the original approach, the estimation of unknown system parameters was made by means of a combination of both gradient and least-squares methods. The novelty of the learning algorithm consists in the application of a deterministic annealing optimization method. It leads to an improvement in the neuro-fuzzy modelling performance. To show the validity of the introduced method, two examples of application concerning chaotic time series prediction and system identification problems are provided.
Źródło:
International Journal of Applied Mathematics and Computer Science; 2005, 15, 4; 561-576
1641-876X
2083-8492
Pojawia się w:
International Journal of Applied Mathematics and Computer Science
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Zastosowanie ANFIS w analizie wyników badań gruntów
Application of the ANFIS to analysis of results from soil testings
Autorzy:
Daniszewska, E
Powiązania:
https://bibliotekanauki.pl/articles/391234.pdf
Data publikacji:
2014
Wydawca:
Politechnika Lubelska. Wydawnictwo Politechniki Lubelskiej
Tematy:
adaptacyjny system neuronowo-rozmyty
logika rozmyta
trójosiowe badanie gruntu
prędkość ścinania
adaptive neuro-fuzzy inference system
fuzzy logic
soil triaxial testing
shear speed
Opis:
Adaptacyjny system wnioskowania neuronowo-rozmytego ANFIS (Adaptive Neuro-Fuzzy Inference System) w programie Matlab posłużył modelowaniu i określaniu relacji między prędkością ścinania a parametrami wytrzymałościowymi gruntu. Sprawdzono możliwości i umiejętności narzędzia ANFIS w interpretacji wyników badań trójosiowego ściskania iłów pobranych z okolic Olsztyna. Model neuronowo-rozmyty został zbudowany na podstawie zbioru wartości, którymi dysponowano po szeregu badań eksperymentalnych, łącznie z wartościami parametrów wytrzymałościowych gruntu na ścinanie. Baza danych wykorzystana do modelowania neuronowo-rozmytego składa się z 6 różnych parametrów gruntowych dla każdej z 12 prędkości ścinania stosowanych podczas badań trójosiowych. Umiejętność uczenia zweryfikowano na bazie danych testowych - model neuronowo-rozmyty zbudowany został z zestawów szkoleniowych, a dokładność została zweryfikowana przez zestawy testów, z którymi model miał do czynienia po raz pierwszy. Wyniki z modelu ANFIS nie odbiegały znacznie od tych, które zostały uzyskane bezpośrednio z badań fizycznych. System ANFIS okazał się narzędziem niezwykle uniwersalnym i nieskomplikowanym w obsłudze. Pozwolił uwzględnić wieloaspektowość wzajemnych relacji parametrów gruntowych.
The article was analyzed in order to test applicability and capability of the ANFIS tool used for interpretation of results of triaxial shear tests on loamy soils sampled near Olsztyn. The ANFIS system in the Matlab software programme was used to model and determine relationships between the shear stress and soil resistance parameters in a triaxial shear test apparatus. It has been demonstrated that the achieved shear strength parameters are significantly affected by the variables tested during the triaxial experiments and physical parameters of a given soil sample, but also by the loading increment rate during the tests. It is extremely important to adjust the rate of loading during a test according to the preliminary characterization of a tested ground sample so as to have some control over the obtained ground strength parameters. The neuro-fuzzy model has been constructed based on a set of values obtained after a series of experimental tests, including values of ground shear strength parameters. The database used for the neuro-fuzzy modelling consisted of 6 different ground parameters for each of the 12 shear stress rates applied during the triaxial tests. The learnability was verified on a database composed of the test results – a neuro-fuzzy model was built from learning sets and its accuracy was verified by sets of tests to which the model was applied for the first time. The results obtained from the ANFIS model did not diverge substantially from the ones obtained directly by performing the physical tests. The ANFIS proved to be highly universal and easy to operate. It accounted for the multi-faceted nature of interrelationships between ground parameters.
Źródło:
Budownictwo i Architektura; 2014, 13, 2; 7-15
1899-0665
Pojawia się w:
Budownictwo i Architektura
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Analysis of adaptive neuro-fuzzy PD controller with competitive Petri layers in speed control system for DC motor
Autorzy:
Derugo, P.
Szabat, K.
Powiązania:
https://bibliotekanauki.pl/articles/97666.pdf
Data publikacji:
2013
Wydawca:
Politechnika Poznańska. Wydawnictwo Politechniki Poznańskiej
Tematy:
adaptive neuro-fuzzy controller
Peri Layers
competitive layers
MRAS
Opis:
In the paper the issues related to the application of adaptive neuro-fuzzy controller for speed controller of an electrical motor are considered. Adaptive control structure with reference model (MRAS) is used. The standard controller is modified by the implementation of competitive Petri layers into its internal structure. The proposed modification improves the properties of the drive compared to the control structure with standard neuro-fuzzy controller. Theoretical considerations are confirmed by simulation studies experimental tests done on the laboratory stand.
Źródło:
Computer Applications in Electrical Engineering; 2013, 11; 267-280
1508-4248
Pojawia się w:
Computer Applications in Electrical Engineering
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Application of competitive and transition petri layers in adaptive neuro-fuzzy controller
Autorzy:
Derugo, P.
Powiązania:
https://bibliotekanauki.pl/articles/1193155.pdf
Data publikacji:
2016
Wydawca:
Politechnika Wrocławska. Oficyna Wydawnicza Politechniki Wrocławskiej
Tematy:
Petri layer
neuro-fuzzy
MRAS
competitive layer
transition layer
Opis:
The article is a summary of previous work on the possibility of using Petri layers in adaptive neuro-fuzzy controllers. In the first part of the paper the controller and two types of Petri layer have been presented, competitive layer which resets certain signals and transition layer which causes omission of signals. Layer properties were described and comparison has been made. In the second part of the paper, the results of a simulation showing the advantages and disadvantages of proposed solutions have been presented. Both quality of reference signal tracking and energetic cost of control process have been calculated. In the last part, analysis and comments on the results were made. Main conclusions are that transition Petri layer can significantly reduce growth of numerical cost of the algorithm despite the increase of fuzzy rules count. Also both competitive Petri layer and transition Petri layer by changing some inner signals can affect output value of the fuzzy system and thus the control quality indicators change. Most positive solutions have been pointed out
Źródło:
Power Electronics and Drives; 2016, 1, 36/1; 103-115
2451-0262
2543-4292
Pojawia się w:
Power Electronics and Drives
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Real-time forecasting of water levels using adaptive neuro- fuzzy systems
Autorzy:
Gautam, D. K.
Holz, K. P.
Meyer, Z.
Powiązania:
https://bibliotekanauki.pl/articles/241104.pdf
Data publikacji:
2001
Wydawca:
Polska Akademia Nauk. Instytut Budownictwa Wodnego PAN
Tematy:
real-time forecasting
high water levels
adaptive
neuro-fuzzy systems
Odra River
Opis:
Real-time forecasting of high water levels at the mouth section of the Odra river is important for the safety conditions of shipping, shipyard works, river banks pro-tection, flood control and overall management of aquatic environment in the area. While numerical hydrodynamic models offer one possible solution, such models require forecasting of all boundary conditions and forcing data, calibration of model parameters and are often too complex and time consuming. These models are not very suitable for real-time forecasting where fast solutions are required to provide ad-equate lead time. Simpler approaches offered by artificial intelligence methods such as artificial neural networks and fuzzy rule-based systems are thus becoming more attractive and promising alternatives. These methods provide a fast, sufficiently good and low-cost solution. In this paper, an application of Adaptive-Network-Based Fuzzy Inference System (ANFIS) is presented for real-time forecasting of water levels at Police on the mouth section of the Odra river.
Źródło:
Archives of Hydro-Engineering and Environmental Mechanics; 2001, 48, 4; 3-21
1231-3726
Pojawia się w:
Archives of Hydro-Engineering and Environmental Mechanics
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Neuro-fuzzy control of a robotic manipulator
Autorzy:
Gierlak, P.
Muszyńska, M.
Żylski, W.
Powiązania:
https://bibliotekanauki.pl/articles/955199.pdf
Data publikacji:
2014
Wydawca:
Uniwersytet Zielonogórski. Oficyna Wydawnicza
Tematy:
manipulator
sztuczna inteligencja
sieci neuronowe
robot
robotic manipulator
force control
neuro-fuzzy system
Opis:
In this paper, to solve the problem of control of a robotic manipulator’s movement with holonomical constraints, an intelligent control system was used. This system is understood as a hybrid controller, being a combination of fuzzy logic and an artificial neural network. The purpose of the neuro-fuzzy system is the approximation of the nonlinearity of the robotic manipulator’s dynamic to generate a compensatory control. The control system is designed in such a way as to permit modification of its properties under different operating conditions of the two-link manipulator.
Źródło:
International Journal of Applied Mechanics and Engineering; 2014, 19, 3; 575-584
1734-4492
2353-9003
Pojawia się w:
International Journal of Applied Mechanics and Engineering
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Hybrid neuro-fuzzy classifier based on NEFCLASS model
Hybrydowy neuronowo-rozmyty klasyfikator oparty na modelu NEFCLASS
Autorzy:
Gliwa, B.
Byrski, A.
Powiązania:
https://bibliotekanauki.pl/articles/305407.pdf
Data publikacji:
2011
Wydawca:
Akademia Górniczo-Hutnicza im. Stanisława Staszica w Krakowie. Wydawnictwo AGH
Tematy:
klasyfikatory neuronowo-rozmyte
NEFCLASS
sieci neuronowe
systemy rozmyte
neuro-fuzzy classifier
neural networks
fuzzy systems
Opis:
The paper presents hybrid neuro-fuzzy classifier, based on NEFCLASS model, which was modified. The presented classifier was compared to popular classifiers - neural networks and k-nearest neighbours. Efficiency of modifications in classifier was compared with methods used in original model NEFCLASS (learning methods). Accuracy of classifier was tested using 3 datasets from UCI Machine Learning Repository: iris, wine and breast cancer wis-consin. Moreover, influence of ensemble classification methods on classification accuracy was presented.
Artykuł przedstawia zasadę działania oraz wyniki badań eksperymentalnych klasyfikatora opartego na hybrydzie sieci neuronowej z logiką rozmytą, bazujący na modelu NEFCLASS. Prezentacja struktury i działania klasyfikatora została zilustrowana wynikami eksperymentów porównawczych przeprowadzonych dla popularnych klasyfikatorów, takich jak perceptron wielowarstwowy k najbliższych sąsiadów. Skuteczność wprowadzonych modyfikacji do klasyfikatora została porównana z metodami używanymi w oryginalnym modelu NEFCLASS (metody uczenia). Jako dane benchmarkowe posłużyły wybrane bazy danych z UCI Machine Learning Repository (iris, wine, breast cancer wisconsin). Zaprezentowano również wpływ użycia metod klasyfikacji zbiorczej na efektywność klasyfikacji.
Źródło:
Computer Science; 2011, 12; 115-135
1508-2806
2300-7036
Pojawia się w:
Computer Science
Dostawca treści:
Biblioteka Nauki
Artykuł

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies