Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "neural systems" wg kryterium: Temat


Tytuł:
Fusion Technology of Neural Networks and Fuzzy Systems: a Chronicled Progression from the Laboratory to Our Daily Lives
Autorzy:
Takagi, H.
Powiązania:
https://bibliotekanauki.pl/articles/911142.pdf
Data publikacji:
2000
Wydawca:
Uniwersytet Zielonogórski. Oficyna Wydawnicza
Tematy:
sieć neuronowa
system rozmyty
algorytmy
cooperative models
neural networks
fuzzy systems
genetic algorithms
real world applications
overview
Opis:
We chronicle the research on the fusion technology of neural networks and fuzzy systems (NN+FS), the models that have been proposed from this research, and the commercial products and industrial systems that have adopted these models. First, we review the NN+FS research activity during the early stages of their development in Japan, the US, and Europe. Next, following the classifi- cation of NN+FS models, we show the ease of fusing these technologies based on the similarities of the data flow network structures and the non-linearity realization strategies of NNs and FSs. Then, we describe several models and applications of NN+FS. Finally, we introduce some important and recently developed NN+FS patents.
Źródło:
International Journal of Applied Mathematics and Computer Science; 2000, 10, 4; 647-673
1641-876X
2083-8492
Pojawia się w:
International Journal of Applied Mathematics and Computer Science
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
A patient walk-data-record modelling using a spline interpolation method
Autorzy:
Chandzlik, S.
Piecha, J.
Powiązania:
https://bibliotekanauki.pl/articles/332939.pdf
Data publikacji:
2002
Wydawca:
Uniwersytet Śląski. Wydział Informatyki i Nauki o Materiałach. Instytut Informatyki. Zakład Systemów Komputerowych
Tematy:
szkolenia sieci neuronowych
automatyzacja diagnostyki medycznej
neural network training
conclusion-making systems
medical diagnostics automation
Opis:
The paper describes an analytical method of data record description that allows converting samples of discrete data record into continuous function. This operation allows re-sampling the data record with a sampling rate that is adequate to step duration. The record length is limited to an efficient size for training the Conclusion-Making Unit (CMU). Various options available in the PSW equipment [6], [7] give the user many aims in putting diagnosis anyhow, due to simplification of the CMU training process several methods for data records modifications are considered.
Źródło:
Journal of Medical Informatics & Technologies; 2002, 3; MI153-159
1642-6037
Pojawia się w:
Journal of Medical Informatics & Technologies
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Evolutionary algorithms and neural networks applied to the computer - aided medical diagnosis
Autorzy:
Zaganczyk, A.
Powiązania:
https://bibliotekanauki.pl/articles/333696.pdf
Data publikacji:
2002
Wydawca:
Uniwersytet Śląski. Wydział Informatyki i Nauki o Materiałach. Instytut Informatyki. Zakład Systemów Komputerowych
Tematy:
algorytmy genetyczne
sieci nuronowe
systemy hybrydowe
zawał mięśnia sercowego
genetic algorithms
neural networks
hybrid systems
myocardial infarction
Opis:
The purpose of presented work is to create a project and computer implementation of complex decision support system used in an important medical field, which is cardiology. This system is applied to support physical diagnosis concern different kinds of myocardial infraction. The system - called NEUROGEN v.01, is a kind of hybrid system, which is a combination of Genetic Algorithm (GA) and Neural Network (NN). The idea of this specific combination is that GA is used as a evolutionary method of learning of NN. In accordance with this special task, the NN is a three-layer feedforward network with eight numbers of input neurons, six numbers of hidden and five number of output neurons. The number of neurons in each layer was appointed on the base of data of the task. In this work, the purpose was to look for the optimal values of the parameters of algorithm, which are: crossover probability, mutation probability, the number of individuals in population, the number of generations of the algorithm and λ - parameter of function of activation which characterize neurons in NN. An extra task is to check if the beginning population has any influence on effectiveness of the system. In this paper there will be presented the way of rising of NEUROGEN v.01 and achieved results.
Źródło:
Journal of Medical Informatics & Technologies; 2002, 4; SN21-24
1642-6037
Pojawia się w:
Journal of Medical Informatics & Technologies
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Improving the Generalization Ability of Neuro-Fuzzy Systems by e-Insensitive Learning
Autorzy:
Łęski, J.
Powiązania:
https://bibliotekanauki.pl/articles/908037.pdf
Data publikacji:
2002
Wydawca:
Uniwersytet Zielonogórski. Oficyna Wydawnicza
Tematy:
informatyka
fuzzy systems
neural networks
tolerant learning
generalization control
robust methods
Opis:
A new learning method tolerant of imprecision is introduced and used in neuro-fuzzy modelling. The proposed method makes it possible to dispose of an intrinsic inconsistency of neuro-fuzzy modelling, where zero-tolerance learning is used to obtain a fuzzy model tolerant of imprecision. This new method can be called e-insensitive learning, where, in order to fit the fuzzy model to real data, the e-insensitive loss function is used. e-insensitive learning leads to a model with minimal Vapnik-Chervonenkis dimension, which results in an improved generalization ability of this system. Another advantage of the proposed method is its robustness against outliers. This paper introduces two approaches to solving e-insensitive learning problem. The first approach leads to a quadratic programming problem with bound constraints and one linear equality constraint. The second approach leads to a problem of solving a system of linear inequalities. Two computationally efficient numerical methods for e-insensitive learning are proposed. Finally, examples are given to demonstrate the validity of the introduced methods.
Źródło:
International Journal of Applied Mathematics and Computer Science; 2002, 12, 3; 437-447
1641-876X
2083-8492
Pojawia się w:
International Journal of Applied Mathematics and Computer Science
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Modelling the data record of a patient walk by langrange-polynomial method
Autorzy:
Chandzlik, S.
Piecha, J.
Powiązania:
https://bibliotekanauki.pl/articles/332944.pdf
Data publikacji:
2002
Wydawca:
Uniwersytet Śląski. Wydział Informatyki i Nauki o Materiałach. Instytut Informatyki. Zakład Systemów Komputerowych
Tematy:
szkolenia sieci neuronowych
automatyzacja diagnostyki medycznej
neural network training
conclusion-making systems
medical diagnostics automation
Opis:
Various options available in PSW footprint and walking characteristics measuring equipment [6], [7], give the user many aims in putting diagnosis. A Conclusion-Making Unit (CMU) that has been described in this paper supports the diagnosis automation procedures. Due to simplifying the CMU training process some affords in a field of the input record length reduction have been undertaken. The paper describes an analytical method of the data record description that allows converting discrete data samples into continuous function. This way a redigitalisation of the record can be done, where sampling period is matched with the walk length. This normalization allows reducing the data record length used for fast training of the CMU.
Źródło:
Journal of Medical Informatics & Technologies; 2002, 3; MI143-152
1642-6037
Pojawia się w:
Journal of Medical Informatics & Technologies
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Neural Network-Based Narx Models in Non-Linear Adaptive Control
Autorzy:
Dzieliński, A.
Powiązania:
https://bibliotekanauki.pl/articles/907986.pdf
Data publikacji:
2002
Wydawca:
Uniwersytet Zielonogórski. Oficyna Wydawnicza
Tematy:
automatyka
neural networks
adaptive control
nonlinear systems
Opis:
The applicability of approximate NARX models of non-linear dynamic systems is discussed. The models are obtained by a new version of Fourier analysis-based neural network also described in the paper. This constitutes a reformulation of a known method in a recursive manner, i.e. adapted to account for incoming data on-line. The method allows us to obtain an approximate model of the non-linear system. The estimation of the influence of the modelling error on the discrepancy between the model and real system outputs is given. Possible applications of this approach to the design of BIBO stable closed-loop control are proposed.
Źródło:
International Journal of Applied Mathematics and Computer Science; 2002, 12, 2; 235-240
1641-876X
2083-8492
Pojawia się w:
International Journal of Applied Mathematics and Computer Science
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
An alternative approach to fault detection in dynamic systems on the basis of output layer weight values comparison, of the model RMLP type neural networks
Alternatywne podejscie do wykrywania uszkodzeń w układach dynamicznych na podstawie porównania wag wyjsciowych neuronowych sieci typu RMLP
Autorzy:
Wondim, G.
Powiązania:
https://bibliotekanauki.pl/articles/151811.pdf
Data publikacji:
2003
Wydawca:
Stowarzyszenie Inżynierów i Techników Mechaników Polskich
Tematy:
sieci neuronowe
wykrywanie uszkodzeń
układy dynamiczne
neural networks
fault detection
dynamic systems
Opis:
The complexity of technological processes needs the study and development of computer based fault detection and diagnosis method enabling process faults be detected and localized during normal plant operation. In this paper we propose fault detection method based on a simple arithmetic relations of output layer weight values of the model RMLP (Recurrent Multilayer Perceptron) networks, assuming each of the model neural networks possesses only one output layer neuron. We build a neural model bank of model neural networks designed and trained on the different operating points of an arbitrary assumed dynamic system. We consider 5 different operating points, where the first state is taken to be the normal operation point (no fault) of the system and the rest four states are different faulty states of the same system. For each of these operation points a neural network is designed and trained. After the training, the output layer weight values of each of the trained neural networks are registered to be used as inputs to calculate a certain value. Based on the comparison of the values, we make conclusion to which of the 5 pre-defined states does a new assumed unknown system may belong.
Źródło:
Pomiary Automatyka Kontrola; 2003, R. 49, nr 11, 11; 41-44
0032-4140
Pojawia się w:
Pomiary Automatyka Kontrola
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Beta neuro-fuzzy systems
Autorzy:
Alimi, A. M.
Powiązania:
https://bibliotekanauki.pl/articles/1931568.pdf
Data publikacji:
2003
Wydawca:
Politechnika Gdańska
Tematy:
beta function
kernel based neural networks
Sugeno fuzzy model
neuro-fuzzy systems
universal approximation property
learning algorithms
incremental learning
Opis:
In this paper we present the Beta function and its main properties. A key feature of the Beta function, which is given by the central-limit theorem, is also given. We then introduce a new category of neural networks based on a new kernel: the Beta function. Next, we investigate the use of Beta fuzzy basis functions for the design of fuzzy logic systems. The functional equivalence between Beta-based function neural networks and Beta fuzzy logic systems is then shown with the introduction of Beta neuro-fuzzy systems. By using the SW theorem and expanding the output of the Beta neuro-fuzzy system into a series of Beta fuzzy-based functions, we prove that one can uniformly approximate any real continuous function on a compact set to any arbitrary accuracy. Finally, a learning algorithm of the Beta neuro-fuzzy system is described and illustrated with numerical examples.
Źródło:
TASK Quarterly. Scientific Bulletin of Academic Computer Centre in Gdansk; 2003, 7, 1; 23-41
1428-6394
Pojawia się w:
TASK Quarterly. Scientific Bulletin of Academic Computer Centre in Gdansk
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Fuzzy inference neural networks with fuzzy parameters
Autorzy:
Rutkowska, D.
Hayashi, Y.
Powiązania:
https://bibliotekanauki.pl/articles/1931581.pdf
Data publikacji:
2003
Wydawca:
Politechnika Gdańska
Tematy:
neuro-fuzzy systems
fuzzy neural networks
fuzzy inference neural networks
fuzzy systems of type 2
fuzzy granulation
Opis:
This paper concerns fuzzy neural networks and fuzzy inference neural networks, which are two different approaches to neuro-fuzzy combinations. The former is a direct fuzzification of artificial neural networks by introducing fuzzy signals and fuzzy weights. The latter is a representation of fuzzy systems in the form of multi-layer connectionist networks, similar to neural networks. Parameters of membership functions (centers and widths) play the role of neural network weights. In this paper, fuzzy inference neural networks with fuzzy parameters are considered. Neuro-fuzzy systems of this kind utilize both approaches: fuzzy neural networks and fuzzy inference neural networks. They also pertain to fuzzy systems of type 2 since membership functions with fuzzy parameters characterize type 2 fuzzy sets. Various architectures of these networks have been obtained for fuzzy systems based on different fuzzy implications. By analogy with fuzzy inference neural networks with crisp parameters, methods of learning fuzzy parameters and rule generation can be derived for neuro-fuzzy systems with fuzzy parameters. Fuzzy inference neural networks are studied in the framework of fuzzy granulation. In particular, fuzzy clustering as fuzzy information granulation is proposed to be applied in order to generate fuzzy IF-THEN rules. Applications of fuzzy inference neural networks are also outlined.
Źródło:
TASK Quarterly. Scientific Bulletin of Academic Computer Centre in Gdansk; 2003, 7, 1; 7-22
1428-6394
Pojawia się w:
TASK Quarterly. Scientific Bulletin of Academic Computer Centre in Gdansk
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Modelowanie kartograficzne z wykorzystaniem neurorozmytych automatów komórkowych
Using of neuro-fuzzy cellular automata for cartographic modelling
Autorzy:
Olszewski, R.
Powiązania:
https://bibliotekanauki.pl/articles/130338.pdf
Data publikacji:
2003
Wydawca:
Stowarzyszenie Geodetów Polskich
Tematy:
automaty komórkowe
modelowanie nieliniowe
generalizacja
sieci neuronowe
systemy wnioskowania rozmytego
cellular automata
non-linear modelling
generalization
neural networks
fuzzy inference systems
Opis:
Mapa jako środek przekazu informacji chorologicznej, tj. informacji o rozmieszczeniu obiektów i zjawisk w przestrzeni geograficznej, podlega ograniczeniom wynikającym z zakresu pojemności informacyjnej. W procesie przekazu kartograficznego istnieje zatem konieczność celowego uogólnienia informacji źródłowej realizowanego poprzez generali-zację. Jednym ze sposobów generalizacji jest agregacja danych przestrzennych. Istnieje wiele algorytmicznych metod agregacji, większość z nich związana jest z generalizacją danych zapisanych w formacie wektorowym. Dla danych źródłowych w postaci rastrowej wymaga to pracochłonnej wstępnej konwersji formatu raster → wektor oraz wynikowej konwersji wektor → raster. Autor podjął próbę zastosowania bezpośredniej agregacji obiektów powierzchniowych na obrazach rastrowych. Przeprowadzone badania wskazują na celowość zastosowania metod tzw. sztucznej inteligencji obliczeniowej, jako metody kartograficznego modelowania tak zdefiniowanych danych źródłowych. W artykule omówiono trzy wybrane metody sztucznej inteligencji obliczeniowej (automaty komórkowe, sztuczne sieci neuronowe i systemy wnioskowania rozmytego) oraz ich zastosowanie w procesie generalizacji kartograficznej.
Investigations which have been performed by the author justify utilisation of methods of the, so-called, artificial intelligence, as a complex method of cartographic modelling of source data. Of the many existing methods for area aggregation a majority concern maps in vector format. The author investigated some approaches to direct aggregation of area objects in raster maps. This includes cellular automata, neural networks and fuzzy inference systems. The essence of cellular automata is the ability to create complex, global patterns and spatial behaviour, based on simple rules of changes of local range and on knowledge concerning individual cells. Therefore a model of the cartographic generalization process, combining the nature of quantitative generalization of the content and the form with the nature of qualitative generalization, may be developed based on the theory of non-linear cellular automata.
Źródło:
Archiwum Fotogrametrii, Kartografii i Teledetekcji; 2003, 13a; 171-180
2083-2214
2391-9477
Pojawia się w:
Archiwum Fotogrametrii, Kartografii i Teledetekcji
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Perception-based reasoning: evaluation systems
Autorzy:
Rutkowska, D.
Powiązania:
https://bibliotekanauki.pl/articles/1931577.pdf
Data publikacji:
2003
Wydawca:
Politechnika Gdańska
Tematy:
fuzzy sets
perception-based systems
fuzzy neurons
neural networks
artificial intelligence
Opis:
A perception-based interpretation of evaluation systems is proposed in this paper. Thus, a perception-based approach to create intelligent systems is considered. The evaluation systems can be employed eg. in order to assess student exams, as well as to other applications. Evaluation marks used in these systems are given as perceptions expressed by words. The words play the role of labels of perceptions, and are represented by fuzzy sets. This means that the idea of perception-based systems, introduced by Zadeh, is applied. Various algorithms of overall assessment are suggested in this paper. Overall evaluation is produced as an aggregation of component evaluation marks. Systems of this kind can be obtained using fuzzy neurons, so fuzzy neural networks are also mentioned as a method of perception-based reasoning. The usefulness in artificial intelligence of both fuzzy sets and neural networks, and especially a combination of these, is shown.
Źródło:
TASK Quarterly. Scientific Bulletin of Academic Computer Centre in Gdansk; 2003, 7, 1; 131-145
1428-6394
Pojawia się w:
TASK Quarterly. Scientific Bulletin of Academic Computer Centre in Gdansk
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
A fault detection method in dynamic systems, based on a Euclidean measure, between the weight vector of the model neural networks
Metody wykrywania uszkodzeń w układach dynamicznych, na podstawie miary Euklidesowej między wektorami wag wyjściowych modeli neuronowych
Autorzy:
Wondim, G.
Powiązania:
https://bibliotekanauki.pl/articles/151951.pdf
Data publikacji:
2004
Wydawca:
Stowarzyszenie Inżynierów i Techników Mechaników Polskich
Tematy:
układy dynamiczne
sieci neuronowe
miara Euklidesowa
wykrywanie uszkodzeń
dynamic systems
neural networks
Euclidean measure
fault detection
Opis:
In this paper, we present a certain method of fault detection in dynamic systems by assuming some boundary conditions. The proposed method relies primarily, on preparing a neural database of the model neural networks, which are supposed to represent the dynamic system on its different operating points. There after, we assume a certain fault state of the system composed of two or more of the faults in the database and we point out to which of the faults the assumed system belongs. The core of the method is computing the Euclidean distance between the output layer weight vectors of the model neural networks in the database, and the neural network model representing the new assumed state of the system. Based on the computed Euclidean measure, we conclude that, the fault model, which has the minimum Euclidean distance to the new assumed system state model, is the most probable to happen. The neural network models used are of the RMLP (recurrent multilayer perceptron) types, each of which are assumed to possess only one output layer neuron.
W artykule przedstawiamy pewne metody wykrywania uszkodzeń w układach dynamicznych przy pewnych założeniach. Przedstawiona metoda opiera się na budowaniu neuronowego banku modeli układu reprezentujacego układ w różnych punktach pracy. Po takim przygotowaniu, założymy nowe wadliwe stany układu składające się z różnych stanów uszkodzeń z bazy, i na podstawie zaproponowanej metody wnioskujemy do których stanów można zakwalifikować te nowe założonego układu. Ważnym elementem metody jest obliczona odległość Euklidesowa między wektorami wag wyjściowych modeli neuronowych w bazie danych i modeli sieci reprezentujących nowy stan układu. Na podstawie tej odległości wnioskujemy, że model uszkodzenia, który ma minimalną odległość Euklidesową w nowym modelu systemu, jest tym w którym to nastapiło. Wykorzystywane sieci są typu RMLP (recurrent Multilayer Perceptron) i przyjęliśmy założenia, że każdy model sieci neuronowej zawiera tylko jeden neuron wyjściowy.
Źródło:
Pomiary Automatyka Kontrola; 2004, R. 50, nr 4, 4; 17-20
0032-4140
Pojawia się w:
Pomiary Automatyka Kontrola
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Time-varying time-delay estimation for nonlinear systems using neural networks
Autorzy:
Tan, Y.
Powiązania:
https://bibliotekanauki.pl/articles/907277.pdf
Data publikacji:
2004
Wydawca:
Uniwersytet Zielonogórski. Oficyna Wydawnicza
Tematy:
modelowanie procesu
opóźnienie czasowe
układ nieliniowy
sieć neuronowa
modelling
time delay
nonlinear systems
neural networks
estimation
Opis:
Nonlinear dynamic processes with time-varying time delays can often be encountered in industry. Time-delay estimation for nonlinear dynamic systems with time-varying time delays is an important issue for system identification. In order to estimate the dynamics of a process, a dynamic neural network with an external recurrent structure is applied in the modeling procedure. In the case where a delay is time varying, a useful way is to develop on-line time-delay estimation mechanisms to track the time-delay variation. In this paper, two schemes called direct and indirect time-delay estimators are proposed. The indirect time-delay estimator considers the procedure of time-delay estimation as a nonlinear programming problem. On the other hand, the direct time-delay estimation scheme applies a neural network to construct a time-delay estimator to track the time-varying time-delay. Finally, a numerical example is considered for testing the proposed methods.
Źródło:
International Journal of Applied Mathematics and Computer Science; 2004, 14, 1; 63-68
1641-876X
2083-8492
Pojawia się w:
International Journal of Applied Mathematics and Computer Science
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Trendy i problemy w diagnostyce procesów
Trends and problems in diagnostics
Autorzy:
Korbicz, J.
Powiązania:
https://bibliotekanauki.pl/articles/328569.pdf
Data publikacji:
2004
Wydawca:
Polska Akademia Nauk. Polskie Towarzystwo Diagnostyki Technicznej PAN
Tematy:
diagnostyka procesów
model-based structure
układ z modelem
obserwator o nieznanych wejściach
sztuczne sieci neuronowe
logika rozmyta
sieci neuronowo-rozmyte
algorytmy ewolucyjne
process diagnosis
unknown input observers
artificial neural networks
fuzzy logic
neuro-fuzzy systems
evolutionary algorithms
Opis:
W ostatnich latach w systemach detekcji i lokalizacji uszkodzeń dla układów dynamicznych stosuje się zintegrowane ilościowe i jakościowe modele informacji, a większość z nich oparta jest na modelach obliczeń inteligentnych. Celem niniejszej pracy jest prezentacja nowych metod i technik analitycznych oraz obliczeń inteligentnych w systemach diagnostyki procesów. Przyjmując strukturę układu diagnostyki z modelem omawia się możliwości stosowania modeli analitycznych, a przede wszystkim obserwatorów o nieznanych wejściach. Szerzej rozpatruje się alternatywne podejścia oparte na wykorzystaniu metod obliczeń inteligentnych, takich jak sztuczne sieci neuronowe, logika rozmyta, sieci neuronowo-rozmyte oraz algorytmy ewolucyjne do rozwiązywania zadań globalnej optymalizacji. Dla zilustrowania efektywności metod sztucznych sieci neuronowych typu GMDH w układach diagnostyki w końcowej części referatu rozpatruje się problem diagnostyki urządzenia wykonawczego w Cukrowni Lublin.
Recents approaches to Fault Detection and Isolation (FDI) for dynamic systems use methods of integrating quantitative and qualitative model information, and most of these are based on soft computing methods. The purpose of this paper is to present new methods and applications in the field of analytical and soft computing techniques for fault diagnosis of processes. Taking into account the model-based structure of a diagnostics system, possible applications of analytical models, and first of all unknown input observers, are considered. Alternative soft computing methods such as artificial neural networks, fuzzy logic, neuro-fuzzy structures and evolutionary algorithms for global optimization problems are presented and discussed in greater detail. To illustrate the effectiveness of GMDH artificial neural networks in fault diagnosis, an industrial valve actuator system in a sugar factory (Cukrownia Lublin S.A., Poland) is tested.
Źródło:
Diagnostyka; 2004, 30, T. 1; 275-286
1641-6414
2449-5220
Pojawia się w:
Diagnostyka
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Neuro-fuzzy modelling based on a deterministic annealing approach
Autorzy:
Czabański, R.
Powiązania:
https://bibliotekanauki.pl/articles/908442.pdf
Data publikacji:
2005
Wydawca:
Uniwersytet Zielonogórski. Oficyna Wydawnicza
Tematy:
system rozmyty
sieć neuronowa
ekstrakcja reguł
fuzzy systems
neural networks
neuro-fuzzy systems
rules extraction
deterministic annealing
prediction
Opis:
This paper introduces a new learning algorithm for artificial neural networks, based on a fuzzy inference system ANBLIR. It is a computationally effective neuro-fuzzy system with parametrized fuzzy sets in the consequent parts of fuzzy if-then rules, which uses a conjunctive as well as a logical interpretation of those rules. In the original approach, the estimation of unknown system parameters was made by means of a combination of both gradient and least-squares methods. The novelty of the learning algorithm consists in the application of a deterministic annealing optimization method. It leads to an improvement in the neuro-fuzzy modelling performance. To show the validity of the introduced method, two examples of application concerning chaotic time series prediction and system identification problems are provided.
Źródło:
International Journal of Applied Mathematics and Computer Science; 2005, 15, 4; 561-576
1641-876X
2083-8492
Pojawia się w:
International Journal of Applied Mathematics and Computer Science
Dostawca treści:
Biblioteka Nauki
Artykuł

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies