- Tytuł:
- Influence of gestational age on neural networks interpretation of fetal monitoring signals
- Autorzy:
-
Jeżewski, M.
Czabański, R.
Horoba, K.
Wróbel, J.
Łęski, J.
Jeżewski, J. - Powiązania:
- https://bibliotekanauki.pl/articles/333505.pdf
- Data publikacji:
- 2008
- Wydawca:
- Uniwersytet Śląski. Wydział Informatyki i Nauki o Materiałach. Instytut Informatyki. Zakład Systemów Komputerowych
- Tematy:
-
monitoring płodu
kardiotokografia
klasyfikacja
sieci neuronowe
fetal monitoring
cardiotocography
classification
neural networks (NN) - Opis:
- Cardiotocographic monitoring (CTG) is a primary biophysical monitoring method for assessment of the fetal state and is based on analysis of fetal heart rate, uterine contraction activity and fetal movement signals. Visual analysis of CTG traces is very difficult so computer-aided fetal monitoring systems have become a standard in clinical centres. We proposed the application of neural networks for the prediction of fetal outcome using the parameters of quantitative description of acquired signals as inputs. We focused on the influence of the gestational age (during trace recording) on the fetal outcome classification quality. We designed MLP and RBF neural networks with changing the number of neurons in the hidden layer to find the best structure. Networks were trained and tested fifty times, with random cases assignment to training, validating and testing subset. We obtained the value of sensitivity index above 0.7, what may be regarded as good result. However additional trace grouping within similar gestational age, increased classification quality in the case of MLP networks.
- Źródło:
-
Journal of Medical Informatics & Technologies; 2008, 12; 137-142
1642-6037 - Pojawia się w:
- Journal of Medical Informatics & Technologies
- Dostawca treści:
- Biblioteka Nauki