Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "neural identification process" wg kryterium: Temat


Wyświetlanie 1-2 z 2
Tytuł:
Konwersja graficznych danych empirycznych do postaci zbiorów uczących w procesie neuronowej identyfikacji szkodników jabłoni
Empirical graphics data conversion to learning sets in apple-tree pests neural identification process
Autorzy:
Majewski, A.
Powiązania:
https://bibliotekanauki.pl/articles/336457.pdf
Data publikacji:
2007
Wydawca:
Sieć Badawcza Łukasiewicz - Przemysłowy Instytut Maszyn Rolniczych
Tematy:
szkodnik
identyfikacja neuronowa
sztuczna sieć neuronowa
SSN
pest
neural identification process
artificial neural network
ANN
Opis:
Szkodliwość oddziaływania owadów na rośliny uprawne polega przede wszystkim na ich żerowaniu. Fakt ten powoduje daleko posunięte zmiany w morfologii i fizjologii roślin, co w efekcie końcowym prowadzi do ich zamierania. Żeby prawidłowo oznaczyć szkodnika, trzeba mieć możliwość identyfikacji cech kluczowych. Cechy te umiejscowione są na rozmaitych częściach ciała. Wymaga to jednak sporej wiedzy i dobrego rozeznania w grupach. Dotychczasowe metody identyfikacji owadów opierają się na rozpoznawaniu za pomocą kluczy. Klucze używane przez badaczy są ściśle dopasowane do danego osobnika. W zależności od rodzaju czy gatunku szkodnik może być opisany za pomocą setek a nawet tysięcy kluczy, co świadczy o trudności i czasochłonności w ich oznaczaniu. Sztuczne sieci neuronowe ze względów technicznych są uproszczonym symulatorem pracy ludzkiego mózgu posiadając jego cechy. Potrafią się uczyć, są mało wrażliwe na niekompletną informację wejściową przetwarzają wprowadzone sygnały i podają na wyjściu wyniki w czasie rzeczywistym [2]. Wskazane właściwości oraz analizy podczas badań pozwalają przypuszczać, że SNN mogą wykonać zadanie identyfikacji podobnie jak człowiek. Dzięki takiemu zautomatyzowaniu procesu identyfikacji udałoby się wyeliminować współczynnik obiektywizmu.
The mischievous of insects is mostly about their preying on the cultivated plants. In order to identify a pest correctly, one has to have the ability to identify its key characteristics. These are placed all over the insects corpse. A pest can be described by hundreds or even thousands of 'keys' - depending on the kind or species - what proves how difficult and time-consuming the identification is. ANN (Artificial Neural Networks) can learn, are less sensible to incomplete incoming information, they are processing entered signals and give results in actual time. The above properties and the analysis during the research allow to make a conclusion that ANN may do the identification task similarly to a human being. Thanks to such identification process automation it could be possible to eliminate the objectivism factor.
Źródło:
Journal of Research and Applications in Agricultural Engineering; 2007, 52, 1; 37-40
1642-686X
2719-423X
Pojawia się w:
Journal of Research and Applications in Agricultural Engineering
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Neural image analysis in identification process of mechanical damages of kernels
Neuronowa analiza obrazu w procesie identyfikacji mechanicznych uszkodzeń ziarniaków
Autorzy:
Nowakowski, K.
Boniecki, P.
Dach, J.
Powiązania:
https://bibliotekanauki.pl/articles/335305.pdf
Data publikacji:
2009
Wydawca:
Sieć Badawcza Łukasiewicz - Przemysłowy Instytut Maszyn Rolniczych
Tematy:
ziarniak
uszkodzenie
identyfikacja
analiza neuronowa
kernel
damage
neural analysis
identification process
Opis:
The subject of the study was to develop a neural model for the identification of mechanical damage in maize caryopses based on digital photographs. The author has selected a set of features that distinguish between damaged and healthy caryopses. The study has produced an artificial neural network of a multilayer perceptron type whose identification capacity approximates that of a human.
Celem projektu badawczego było opracowanie modelu neuronowego do identyfikacji mechanicznych uszkodzeń ziarniaków kukurydzy na podstawie ich cyfrowych fotografii. Wybrany został zestaw cech charakterystycznych na podstawie, których możliwa jest klasyfikacja ziarniaków na zdrowe i uszkodzone. W wyniku badań otrzymano sztuczną sieć neuronową typu perceptron wielowarstwowy charakteryzującą się zdolnościami identyfikacyjnymi zbliżonymi do umiejętności człowieka.
Źródło:
Journal of Research and Applications in Agricultural Engineering; 2009, 54, 2; 77-80
1642-686X
2719-423X
Pojawia się w:
Journal of Research and Applications in Agricultural Engineering
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-2 z 2

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies