Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "neural computation" wg kryterium: Temat


Wyświetlanie 1-4 z 4
Tytuł:
Data mining and neural network simulations can help to improve deep brain stimulation effects in parkinson’s disease
Autorzy:
Szymański, A.
Kubis, A.
Przybyszewski, A. W.
Powiązania:
https://bibliotekanauki.pl/articles/952939.pdf
Data publikacji:
2015
Wydawca:
Akademia Górniczo-Hutnicza im. Stanisława Staszica w Krakowie. Wydawnictwo AGH
Tematy:
deep brain stimulation
neural computation
data mining
Parkinson's disease
Opis:
Parkinson’s Disease (PD) is primary related to substantia nigra degeneration and, thus, dopamine insufficiency. L-DOPA as a precursor of dopamine is the standard medication in PD. However, disease progression causes L-DOPA therapy efficiency decay (on-off symptom fluctuation), and neurologists often decide to classify patients for DBS (Deep Brain Stimulation) surgery. DBS treatment is based on stimulating the specific subthalamic structure: subthalamic nucleus (STN) in our case. As STN consists of parts with different physiological functions, finding the appropriate placement of the DBS electrode contacts is challenging. In order to predict the neurological effects related to different electrodecontact stimulations, we have tracked connections between the stimulated part of STN and the cortex with the help of diffusion tensor imaging (DTI). By changing a contacts number and amplitude of stimulus (proportional in size to stimulated area), we have determined connections to cortical areas and related neurological effects. We have applied data mining methods to predict which contact (and at what amplitude) should be stimulated in order to improve a particular symptom. We have compared different data mining methods: Wekas Random Forest classifier and Rough Set Exploration System (RSES). We have demonstrated that the Weka classifier was more accurate when predicting the effects of stimulations on general neurological improvements, while RSES was more accurate when using specific neurological symptoms. We have simulated other effects of stimulation related to the interruption of pathological oscillation in the basal ganglia found in PD. Our model represents possible STN neural population with inhibitory and excitatory connections that have pathologically synchronized oscillations. High-frequency electrical stimulation has interrupted synchronization. something that is also observed in PD patients.
Źródło:
Computer Science; 2015, 16 (2); 199-215
1508-2806
2300-7036
Pojawia się w:
Computer Science
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Learning reduplication with a neural network that lacks explicit variables
Autorzy:
Prickett, Brandon
Traylor, Aaron
Pater, Joe
Powiązania:
https://bibliotekanauki.pl/articles/24201229.pdf
Data publikacji:
2022
Wydawca:
Polska Akademia Nauk. Instytut Podstaw Informatyki PAN
Tematy:
neural networks
reduplication
symbolic computation
connectionism
generalization
phonology
Opis:
Reduplicative linguistic patterns have been used as evidence for explicit algebraic variables in models of cognition.1 Here, we show that a variable-free neural network can model these patterns in a way that predicts observed human behavior. Specifically, we successfully simulate the three experiments presented by Marcus et al. (1999), as well as Endress et al.’s (2007) partial replication of one of those experiments. We then explore the model’s ability to generalize reduplicative mappings to different kinds of novel inputs. Using Berent’s (2013) scopes of generalization as a metric, we claim that the model matches the scope of generalization that has been observed in humans. We argue that these results challenge past claims about the necessity of symbolic variables in models of cognition.
Źródło:
Journal of Language Modelling; 2022, 10, 1; 1--38
2299-856X
2299-8470
Pojawia się w:
Journal of Language Modelling
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Evolutionary algorithm inspired by the methods of quantum computer sciences for the improvement of a neural model of the electric power exchange
Autorzy:
Tchórzewski, J.
Ruciński, D.
Powiązania:
https://bibliotekanauki.pl/articles/94729.pdf
Data publikacji:
2017
Wydawca:
Szkoła Główna Gospodarstwa Wiejskiego w Warszawie. Wydawnictwo Szkoły Głównej Gospodarstwa Wiejskiego w Warszawie
Tematy:
Artificial Neural Network
Matlab language
modelling
quantum computation
Polish Power Exchange
day ahead market
Opis:
The work contains results of research on the possibility to improve the neural model of the Electric Power Exchange (polish: Towarowa Giełda Energii Elektrycznej – TGEE) in MATLAB and Simulink environment using evolutionary algorithm inspired by quantum computer science. The developed artificial neural network was trained using data for the Day Ahead Market, assuming the joint volume of supplied and sold electrical energy [MWh] as the input quantities in each hour of the 24-hour day, and average prices [PLN/MWh] as output quantities. The obtained model of the exchange system was improved using the evolutionary algorithm, and further improvement in the accuracy of the model by supplementing the evolutionary algorithm using quantum solutions, related to the initial population, crossover and mutation operators, selection, etc. were proposed.
Źródło:
Information Systems in Management; 2017, 6, 4; 343-355
2084-5537
2544-1728
Pojawia się w:
Information Systems in Management
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Speeding-up convolutional neural networks: A survey
Autorzy:
Lebedev, V.
Lempitsky, V.
Powiązania:
https://bibliotekanauki.pl/articles/201708.pdf
Data publikacji:
2018
Wydawca:
Polska Akademia Nauk. Czytelnia Czasopism PAN
Tematy:
convolutional neural networks
resource-efficient computation
algorithm optimization
splotowe sieci neuronowe
efektywne zasoby obliczeniowe
optymalizacja algorytmu
Opis:
Convolutional neural networks (CNN) have become ubiquitous in computer vision as well as several other domains, but the sheer size of the modern CNNs means that for the majority of practical applications, a significant speed up and compression are often required. Speeding-up CNNs therefore have become a very active area of research with multiple diverse research directions pursued by many groups in academia and industry. In this short survey, we cover several research directions for speeding up CNNs that have become popular recently. Specifically, we cover approaches based on tensor decompositions, weight quantization, weight pruning, and teacher-student approaches. We also review CNN architectures designed for optimal speed and briefly consider automatic architecture search.
Źródło:
Bulletin of the Polish Academy of Sciences. Technical Sciences; 2018, 66, 6; 799-811
0239-7528
Pojawia się w:
Bulletin of the Polish Academy of Sciences. Technical Sciences
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-4 z 4

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies