Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "neural Network" wg kryterium: Temat


Tytuł:
Noise quantization simulation analysis of optical convolutional networks
Autorzy:
Zhang, Ye
Zhang, Saining
Zhang, Danni
Su, Yanmei
Yi, Junkai
Wang, Pengfei
Wang, Ruiting
Luo, Guangzhen
Zhou, Xuliang
Pan, Jiaoqing
Powiązania:
https://bibliotekanauki.pl/articles/27310111.pdf
Data publikacji:
2023
Wydawca:
Politechnika Wrocławska. Oficyna Wydawnicza Politechniki Wrocławskiej
Tematy:
optical neural network
convolutional neural network
noise
quantization
Opis:
Optical neural network (ONN) has been regarded as one of the most prospective techniques in the future, due to its high-speed and low power cost. However, the realization of optical convolutional neural network (CNN) in non-ideal cases still remains a big challenge. In this paper, we propose an optical convolutional networks system for classification problems by applying general matrix multiply (GEMM) technology. The results show that under the influence of noise, this system still has good performance with low TOP-1 and TOP-5 error rates of 44.26% and 14.51% for ImageNet. We also propose a quantization model of CNN. The noise quantization model reaches a sufficient prediction accuracy of about 96% for MNIST handwritten dataset.
Źródło:
Optica Applicata; 2023, 53, 3; 483--493
0078-5466
1899-7015
Pojawia się w:
Optica Applicata
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Neural network simulation in running of acetic acid synthesis unit while start-up
Nejjroetevoe modelirovanie dlja upravlenija kolonnojj sinteza uksusnojj kisloty v period puska
Autorzy:
Porkuian, O.
Samojlova, Z.
Powiązania:
https://bibliotekanauki.pl/articles/792304.pdf
Data publikacji:
2013
Wydawca:
Komisja Motoryzacji i Energetyki Rolnictwa
Tematy:
neural network
artificial neural network
automated control system
acetic acid
MATLAB software
Źródło:
Teka Komisji Motoryzacji i Energetyki Rolnictwa; 2013, 13, 3
1641-7739
Pojawia się w:
Teka Komisji Motoryzacji i Energetyki Rolnictwa
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Application of neural networks to detect eccentricity of induction motors
Autorzy:
Ewert, P.
Powiązania:
https://bibliotekanauki.pl/articles/1193467.pdf
Data publikacji:
2017
Wydawca:
Politechnika Wrocławska. Oficyna Wydawnicza Politechniki Wrocławskiej
Tematy:
neural network
general regression neural network
multilayer perceptron
eccentricity
induction motor
Opis:
The possibility of using neural networks to detect eccentricity of induction motors has been presented. A field-circuit model, which was used to generate a diagnostic pattern has been discussed. The formulas describing characteristic fault frequencies for static, dynamic and mixed eccentricity, occurring in the stator current spectrum, have been presented. Teaching and testing data for neural networks based on a preliminary analysis of diagnostic signals (phase currents) have been prepared. Two types of neural networks were discussed: general regression neural network (GRNN) and multilayer perceptron (MLP) neural network. This paper presents the results obtained for each type of the neural network. Developed neural detectors are characterized by high detection effectiveness of induction motor eccentricity.
Źródło:
Power Electronics and Drives; 2017, 2, 37/2; 151-165
2451-0262
2543-4292
Pojawia się w:
Power Electronics and Drives
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Synchronization analysis of inertial memristive neural networks with time-varying delays
Autorzy:
Wei, R.
Cao, J.
Powiązania:
https://bibliotekanauki.pl/articles/91767.pdf
Data publikacji:
2018
Wydawca:
Społeczna Akademia Nauk w Łodzi. Polskie Towarzystwo Sieci Neuronowych
Tematy:
inertial
memristive
neural network
synchronization
Opis:
This paper investigates the global exponential synchronization and quasi-synchronization of inertial memristive neural networks with time-varying delays. By using a variable transmission, the original second-order system can be transformed into first-order differential system. Then, two types of drive-response systems of inertial memristive neural networks are studied, one is the system with parameter mismatch, the other is the system with matched parameters. By constructing Lyapunov functional and designing feedback controllers, several sufficient conditions are derived respectively for the synchronization of these two types of drive-response systems. Finally, corresponding simulation results are given to show the effectiveness of the proposed method derived in this paper.
Źródło:
Journal of Artificial Intelligence and Soft Computing Research; 2018, 8, 4; 269-282
2083-2567
2449-6499
Pojawia się w:
Journal of Artificial Intelligence and Soft Computing Research
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Neural network approach to compressor modelling with surge margin consideration
Autorzy:
Loryś, Sergiusz Michał
Orkisz, Marek
Powiązania:
https://bibliotekanauki.pl/articles/2091364.pdf
Data publikacji:
2022
Wydawca:
Polska Akademia Nauk. Czytelnia Czasopism PAN
Tematy:
modelling
compressor map
neural-network
Opis:
Artificial neural networks are gaining popularity thank to their fast and accurate response paired with low computing power requirements. They have been proven as a method for compressor performance prediction with satisfactory results. In this paper a new approach of artificial neural networks modelling is evaluated. The auxiliary parameter of ‘relative stability margin Z’ was introduced and used in learning process. This approach connects two methods of compressor modelling such as neural networks and auxiliary parameter utilization. Two models were created, one with utilization of the ‘relative stability margin Z’ as a direct indication of surge margin of any estimated condition, and other with standard compressor parameters. The results were compared by determination of fitting, interpolation and extrapolation capabilities of both approaches. The artificial neural networks used during the process was a two-layer feed-forward neural-network with Levenberg–Marquardt algorithm with Bayesian regularization. The experimental data was interpolated to increase the amount of learning data for the neural network. With the two models created, capabilities of this relatively simple type of neural-network to approximate compressor map was also assessed.
Źródło:
Archives of Thermodynamics; 2022, 43, 1; 89--108
1231-0956
2083-6023
Pojawia się w:
Archives of Thermodynamics
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Bitmap Image Recognition with Neural Networks
Autorzy:
Uchkin, Dmytro
Korotyeyeva, Tetyana
Shestakevych, Tetiana
Powiązania:
https://bibliotekanauki.pl/articles/1833890.pdf
Data publikacji:
2020
Wydawca:
Polska Akademia Nauk. Oddział w Lublinie PAN
Tematy:
neural network
digitized image
Opis:
Logistics, finance, science, and trade are just some of the areas that require computer vision technology, which includes number recognition. The need to recognize numbers in images or photographs is found in tasks such as recognizing car numbers, reading values from paper bills, recognizing object identification numbers, and reading credit card numbers. The development of an online application for recognition numbers in bitmap images using machine training technologies, namely an artificial neural network based on the class of neural networks perceptron, is an actual task.
Źródło:
ECONTECHMOD : An International Quarterly Journal on Economics of Technology and Modelling Processes; 2020, 9, 1; 30--35
2084-5715
Pojawia się w:
ECONTECHMOD : An International Quarterly Journal on Economics of Technology and Modelling Processes
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Neural modeling of plant tissue cultures: a review
Autorzy:
Zielinska, S.
Kepczynska, E.
Powiązania:
https://bibliotekanauki.pl/articles/81293.pdf
Data publikacji:
2013
Wydawca:
Polska Akademia Nauk. Czytelnia Czasopism PAN
Tematy:
artificial neural network
biomass
plant tissue
neural model
tissue culture
in vitro condition
micropropagation
radial neural network
neural network
somatic embryo
Źródło:
BioTechnologia. Journal of Biotechnology Computational Biology and Bionanotechnology; 2013, 94, 3
0860-7796
Pojawia się w:
BioTechnologia. Journal of Biotechnology Computational Biology and Bionanotechnology
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Fast computational approach to the Levenberg-Marquardt algorithm for training feedforward neural networks
Autorzy:
Bilski, Jarosław
Smoląg, Jacek
Kowalczyk, Bartosz
Grzanek, Konrad
Izonin, Ivan
Powiązania:
https://bibliotekanauki.pl/articles/2201329.pdf
Data publikacji:
2023
Wydawca:
Społeczna Akademia Nauk w Łodzi. Polskie Towarzystwo Sieci Neuronowych
Tematy:
feed-forward neural network
neural network learning algorithm
Levenberg-Marquardt algorithm
QR decomposition
Givens rotation
Opis:
This paper presents a parallel approach to the Levenberg-Marquardt algorithm (LM). The use of the Levenberg-Marquardt algorithm to train neural networks is associated with significant computational complexity, and thus computation time. As a result, when the neural network has a big number of weights, the algorithm becomes practically ineffective. This article presents a new parallel approach to the computations in Levenberg-Marquardt neural network learning algorithm. The proposed solution is based on vector instructions to effectively reduce the high computational time of this algorithm. The new approach was tested on several examples involving the problems of classification and function approximation, and next it was compared with a classical computational method. The article presents in detail the idea of parallel neural network computations and shows the obtained acceleration for different problems.
Źródło:
Journal of Artificial Intelligence and Soft Computing Research; 2023, 13, 2; 45--61
2083-2567
2449-6499
Pojawia się w:
Journal of Artificial Intelligence and Soft Computing Research
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Forecasting currency exchange rate time series with fireworks algorithm-based higher order neural network, with special attention to training data enrichment
Autorzy:
Sahu, Kishore Kumar
Nayak, Sarat Chandra
Behera, Himansu Sekhar
Powiązania:
https://bibliotekanauki.pl/articles/1839247.pdf
Data publikacji:
2020
Wydawca:
Akademia Górniczo-Hutnicza im. Stanisława Staszica w Krakowie. Wydawnictwo AGH
Tematy:
exchange rate
virtual data point
interpolation
artificial neural network
fireworks algorithm
functional link neural network
Opis:
Exchange rates are highly fluctuating by nature; thus, they are difficult to forecast. Artificial neural networks (ANNs) have proven to be better than statistical methods. Inadequate training data may lead the model to reach sub-optimal solutions, resulting in poor accuracy (as ANN-based forecasts are data-driven). To enhance forecasting accuracy, we suggests a method of enriching training datasets through exploring and incorporating virtual data points (VDPs) by an evolutionary method called the fireworks algorithm-trained functional link artificial neural network (FWA-FLN). The model maintains a correlation between current and past data, especially at the oscillation point on the time series. The exploration of a VDP and forecast of the succeeding term go consecutively by FWA-FLN. Real exchange rate time series are used to train and validate the proposed model. The efficiency of the proposed technique is related to other similarly trained models and produces far better prediction accuracy.
Źródło:
Computer Science; 2020, 21 (4); 463-488
1508-2806
2300-7036
Pojawia się w:
Computer Science
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
An arma type pi-sigma artificial neural network for nonlinear time series forecasting
Autorzy:
Akdeniz, E.
Egrioglu, E.
Bas, E.
Yolcu, U.
Powiązania:
https://bibliotekanauki.pl/articles/91816.pdf
Data publikacji:
2018
Wydawca:
Społeczna Akademia Nauk w Łodzi. Polskie Towarzystwo Sieci Neuronowych
Tematy:
high order artificial neural networks
pi-sigma neural network, forecasting
recurrent neural network
particle swarm optimization (PSO)
Opis:
Real-life time series have complex and non-linear structures. Artificial Neural Networks have been frequently used in the literature to analyze non-linear time series. High order artificial neural networks, in view of other artificial neural network types, are more adaptable to the data because of their expandable model order. In this paper, a new recurrent architecture for Pi-Sigma artificial neural networks is proposed. A learning algorithm based on particle swarm optimization is also used as a tool for the training of the proposed neural network. The proposed new high order artificial neural network is applied to three real life time series data and also a simulation study is performed for Istanbul Stock Exchange data set.
Źródło:
Journal of Artificial Intelligence and Soft Computing Research; 2018, 8, 2; 121-132
2083-2567
2449-6499
Pojawia się w:
Journal of Artificial Intelligence and Soft Computing Research
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
FPGA Implementation of Neural Nets
Autorzy:
Kumari, B A Sujatha
Kulkarni, Sudarshan Patil
Sinchana, C. G.
Powiązania:
https://bibliotekanauki.pl/articles/27311922.pdf
Data publikacji:
2023
Wydawca:
Polska Akademia Nauk. Czasopisma i Monografie PAN
Tematy:
artificial neural network
Spartan-6
field programmable gate arrays (FPGAs)
convolutional neural network
Opis:
The field programmable gate array (FPGA) is used to build an artificial neural network in hardware. Architecture for a digital system is devised to execute a feed-forward multilayer neural network. ANN and CNN are very commonly used architectures. Verilog is utilized to describe the designed architecture. For the computation of certain tasks, a neural network’s distributed architecture structure makes it potentially efficient. The same features make neural nets suitable for application in VLSI technology. For the hardware of a neural network, a single neuron must be effectively implemented (NN). Reprogrammable computer systems based on FPGAs are useful for hardware implementations of neural networks.
Źródło:
International Journal of Electronics and Telecommunications; 2023, 69, 3; 599--604
2300-1933
Pojawia się w:
International Journal of Electronics and Telecommunications
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
The correlation between the meteorological conditions and the concentration of radionuclides in the ground layer of atmospheric air
Autorzy:
Krajny, E.
Ośródka, L.
Wojtylak, M.
Michalik, B.
Skowronek, J.
Powiązania:
https://bibliotekanauki.pl/articles/148116.pdf
Data publikacji:
2001
Wydawca:
Instytut Chemii i Techniki Jądrowej
Tematy:
atmospheric air
meteorology
neural network
radionuclides
Opis:
The main goal of this work was to find correlation between the concentrations of radionuclides in outdoor air and the meteorological conditions like: air temperature, atmospheric pressure, wind velocity and amount of precipitation. Because the sampling period of radionuclides concentrations in air was relatively long (7 days), the average levels of meteorological parameters have been calculated within the same time. Data of radionuclide concentrations and meteorological data have been analyzed in order to find statistical correlation. The regression analysis and one of the AI methods, known as neural network, were applied. In general, analysis of the gathered data does not show any strong correlation between the meteorological conditions and the concentrations of radionuclides in air. A slightly stronger correlation we found for radionuclides with relatively short half-lives. The only positive correlation has been found between the Be-7 concentration and air temperature (at the significance level á=0.05). In our opinion, the lack of correlation was caused by a too long sampling time in measurements of radionuclides in outdoor air (a whole week). Results of the analysis received by means of the artificial neuron network are better. We were able to find certain groups of meteorological conditions, related with the corresponding concentrations of particular radionuclides in air. Preliminary measurements of radon progeny concentration support the thesis that the link between changes of meteorological parameters and concentrations of radionuclides in ambient air must exist.
Źródło:
Nukleonika; 2001, 46, 4; 189-194
0029-5922
1508-5791
Pojawia się w:
Nukleonika
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Soft Computing and Fractal Theory for Intelligent Manufacturing
Autorzy:
Castillo, O.
Melin, P.
Powiązania:
https://bibliotekanauki.pl/articles/384470.pdf
Data publikacji:
2007
Wydawca:
Sieć Badawcza Łukasiewicz - Przemysłowy Instytut Automatyki i Pomiarów
Tematy:
fuzzy logic
fractal theory
neural network
Opis:
We describe in this paper the combination of soft computing techniques and fractal theory for achieving intelligent manufacturing. Soft computing techniques can be used to develop hybrid intelligent systems. Fractal theory can be used to analyze the geometrical complexity of natural and artificial objects. The careful combination of soft computing and fractal theory can provide us with a good mix of intelligent techniques and fractal mathematical tools, which can help in achieving automation of manufacturing processes. We consider in this paper several manufacturing and automation problems that are efficiently solved with the proposed approach.
Źródło:
Journal of Automation Mobile Robotics and Intelligent Systems; 2007, 1, 1; 41-47
1897-8649
2080-2145
Pojawia się w:
Journal of Automation Mobile Robotics and Intelligent Systems
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Neural network structure optimization algorithm
Autorzy:
Nowakowski, G.
Dorogyy, Y.
Doroga-Ivaniuk, O.
Powiązania:
https://bibliotekanauki.pl/articles/385236.pdf
Data publikacji:
2018
Wydawca:
Sieć Badawcza Łukasiewicz - Przemysłowy Instytut Automatyki i Pomiarów
Tematy:
structure optimization
neural network
ReLU
SGD
Opis:
This paper presents a deep analysis of literature on the problems of optimization of parameters and structure of the neural networks and the basic disadvantages that are present in the observed algorithms and methods. As a result, there is suggested a new algorithm for neural network structure optimization, which is free of the major shortcomings of other algorithms. The paper describes a detailed description of the algorithm, its implementation and application for recognition problems.
Źródło:
Journal of Automation Mobile Robotics and Intelligent Systems; 2018, 12, 1; 5-13
1897-8649
2080-2145
Pojawia się w:
Journal of Automation Mobile Robotics and Intelligent Systems
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
The adaptation modelling of a GPS signal by means of neural networks
Autorzy:
Gil, J.
Powiązania:
https://bibliotekanauki.pl/articles/225779.pdf
Data publikacji:
2006
Wydawca:
Politechnika Warszawska. Wydział Geodezji i Kartografii
Tematy:
GPS project
computer simulations
neural network
Opis:
Geodetic monitoring carried out in a number of cases in order to determine the dynamics of a particular phenomenon requires, apart from suitable measurement instruments, also suitable methods of processing the results of experimental data. While formulating a particular technical problem in the form of an objective function it is possible to obtain its solution by applying an optimising neural network. One of the possible uses of this kind of network is its application in adaptation modeling. The article presents two aspects of modeling: interfering noise elimination and identifying an object in the form of measurement results of dynamic GPS signals (Szpunar et al., 2003) carried out in real time. A computer simulation of the problem has been implemented by the author himself.
Źródło:
Reports on Geodesy; 2006, z. 2/77; 307-314
0867-3179
Pojawia się w:
Reports on Geodesy
Dostawca treści:
Biblioteka Nauki
Artykuł

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies