Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "nanoobiekty" wg kryterium: Temat


Tytuł:
Potencjalne narażenie na nanocząstki srebra podczas rozpylania preparatu do czyszczenia klimatyzacji
Potential exposure to silver nanoparticles during spraying preparation for air-conditioning cleaning
Autorzy:
Jankowska, Elżbieta
Łukaszewska, Joanna
Powiązania:
https://bibliotekanauki.pl/articles/2168408.pdf
Data publikacji:
2014-10-29
Wydawca:
Instytut Medycyny Pracy im. prof. dra Jerzego Nofera w Łodzi
Tematy:
nanocząstki
nanoobiekty
srebro
klimatyzacja
narażenie zawodowe
nanoparticles
nano-objects
silver
airconditioning
occupational exposure
Opis:
Wstęp: Unikalne właściwości celowo zaprojektowanych nanomateriałów (engineered nanomaterials - ENM) i wytwarzanych z nich produktów zdeterminowały dynamiczny rozwój w obszarze wytwarzania i stosowania ENM w różnych gałęziach przemysłu i w zakładach pracy o różnej skali produkcji. Ponieważ nanoobiekty (nanopłytki, nanowłókna, nanocząstki) emitowane podczas wytwarzania i stosowania ENM mogą być przyczyną wielu chorób, także jeszcze nierozpoznanych, na całym świecie prowadzone są prace badawcze z zakresu oceny narażenia wynikającego z emisji nanoobiektów na stanowiskach pracy oraz zagrożeń zdrowotnych dla osób zatrudnionych w procesach wytwarzania i stosowania ENM. Materiał i metody: Badanie potencjalnego narażenia na nanocząstki srebra zawarte w preparacie do czyszczenia klimatyzacji (Nano Silver z Amtra Sp. z o.o.) prowadzono poprzez określanie stężeń i rozkładu wymiarowego cząstek z użyciem różnych przyrządów umożliwiających śledzenie zmian w szerokim zakresie wymiarów cząstek - od nanometrowych (10 nm) do mikrometrowych (10 µm), czyli cząstek, które są z reguły wdychane przez człowieka. Wyniki i wnioski: Z analizy danych wynika, że nawet podczas krótkotrwałego rozpylania preparatu Nano Silver (przez 10 s) w powietrzu - w odległości 52 cm od miejsca rozpylania preparatu - mogą być obecne cząstki o wielkości 10 nm-10 µm. Podczas 3-krotnego rozpylenia preparatu w podobnych warunkach stwierdzono różny wzrost stężeń, przy czym w każdym z przypadków cząstki przez dłuższy czas utrzymywały się w powietrzu. Med. Pr. 2013;64(1):57–67
Background: Unique properties of engineered nanomaterials (ENMs) and products made of them have contributed to a rapid progress in the production and application of ENMs in different branches of industry and in factories with different production scale. Bearing in mind that nano-objects (nanoplates, nanofibres, nanoparticles), emitted during ENM production and application, can cause many diseases, even those not yet recognized, extensive studies have been carried all over the world to assess the extent of exposure to nano-objects at workstations and related health effects in workers employed in ENM manufacture and application processes. Material and Methods: The study of potential exposure to silver nanoparticles contained in the preparation for airconditioning cleaning (Nano Silver from Amtra Sp. z o.o.) involved the determination of concentrations and size distribution of particles, using different devices, allowing for tracing changes in a wide range of dimensions, from nano-size (10 nm) to micrometrsize (10 µm), of the particles which are usually inhaled by humans. Results and Conclusions: The results of the study shows that even during a short-term spraying of Nano Silver preparation (for 10 s) at the distance of 52 cm from the place of preparation spraying - particles of 10 nm-10 µm can be emitted into in the air. During a three-fold preparation spraying in similar conditions differences in concentration increase were observed, but in each case the particles remained in the air for a relatively long time. Med Pr 2013;64(1):57–67
Źródło:
Medycyna Pracy; 2013, 64, 1; 57-67
0465-5893
2353-1339
Pojawia się w:
Medycyna Pracy
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Nanomateriały – propozycje dopuszczalnych poziomów narażenia na świecie a normatywy higieniczne w Polsce
Nanomaterials – Proposals of occupational exposure limits in the world and hygiene standards in Poland
Autorzy:
Świdwińska-Gajewska, Anna M.
Czerczak, Sławomir
Powiązania:
https://bibliotekanauki.pl/articles/2166321.pdf
Data publikacji:
2014-11-05
Wydawca:
Instytut Medycyny Pracy im. prof. dra Jerzego Nofera w Łodzi
Tematy:
nanoobiekty
nanocząstki
narażenie zawodowe
najwyższe dopuszczalne stężenie
nanoobjects
nanoparticles
occupational exposure
maximum allowable concentration
Opis:
Obecnie nie ma prawnie obowiązujących normatywów dla substancji w postaci nanoobiektów w środowisku pracy. Istnieją różne podejścia do szacowania ryzyka i wyznaczania dopuszczalnych poziomów narażenia zawodowego. Celem niniejszego opracowania jest zestawienie dopuszczalnych poziomów narażenia w środowisku pracy zaproponowanych przez międzynarodowe organizacje i światowych ekspertów oraz podstaw i sposobów ich szacowania. W artykule przedstawiono propozycje ekspertów Krajowego Instytutu Zdrowia Publicznego i Środowiska w Holandii (RIVM), Organizacji Rozwoju Nowych Energii i Technologii Przemysłowych w Japonii (NEDO), Narodowego Instytutu Bezpieczeństwa i Higieny Pracy w USA (National Institute for Occupational Safety and Health - NIOSH), opracowania dotyczące poziomów dla nanorurek węglowych (Baytubes® i Nanocyl) Pauluhna i Luizi oraz Pochodne Poziomy Niepowodujące Zmian (derived no-effect levels - DNEL) zgodne z rozporządzeniem REACH, zaproponowane przez zespół ekspertów w ramach 7. Programu Ramowego Komisji Europejskiej pod kierunkiem prof. Vicki Stone (Engineered Nanoparticles: Review Health and Environmental Safety - ENRHES), i alternatywne szacowanie poziomów DNEL dla cząstek słabo rozpuszczalnych według Pauluhna. Biorąc pod uwagę obecnie obowiązujący sposób wyznaczania najwyższych dopuszczalnych stężeń w środowisku pracy w Polsce, można rozważyć, czy jest on adekwatny dla nanoobiektów. Być może warto przychylić się do wprowadzenia wartości odniesienia, podobnych do zaproponowanych przez RIVM, lub zdefiniowania nowej frakcji dla cząstek o wymiarach z zakresu 1-100 nm, uwzględniającej powierzchnię i aktywność cząstek, oraz wypracowania odmiennego sposobu szacowania współczynników modyfikacyjnych. Ważny, jeśli nie kluczowy pozostaje problem właściwej miary (stężenie liczbowe, powierzchniowe, liczbowy rozkład wymiarowy cząstek), a także metod i aparatury, która byłaby dostępna dla wszystkich pracodawców, żeby mogli odpowiedzialnie kontrolować ryzyko związane z narażeniem na nanomateriały w środowisku pracy. Med. Pr. 2013;64(6):829–845
Currently, there are no legally binding workplace exposure limits for substances in the form of nanoobjects. There are different approaches to risk assessment and determination of occupational exposure limits. The purpose of this article is to compare exposure levels in the work environment proposed by international organizations and world experts, as well as the assumptions and methods used for their estimation. This paper presents the proposals of the National Institute for Public Health and the Environment in the Netherlands (RIVM), the New Energy and Industrial Technology Development Organization in Japan (NEDO) and the National Institute for Occupational Safety and Health in the USA (NIOSH). The authors also discuss the reports on the levels for carbon nanotubes (Baytubes® and Nanocyl) proposed by Pauluhn and Luizi, the derived no-effect levels (DNEL) complying with the REACH Regulation, proposed by experts under the 7th Framework Programme of the European Commission, coordinated by Professor Vicki Stone (ENRHES), and alternative estimation levels for poorly soluble particles by Pauluhn. The issue was also raised whether the method of determining maximum admissible concentrations in the work environment, currently used in Poland, is adequate for nanoobjects. Moreover, the introduction of nanoreference values, as proposed by RIVM, the definition of a new fraction for particles of 1-100 nm, taking into account the surface area and activity of the particles, and an adequate estimation of uncertainty factors seem to be worth considering. Other important, if not key issues are the appropriate measurement (numerical concentration, surface concentration, particle size distribution), as well as the methodology and equipment accessibility to all employers responsible for a reliable risk assessment of exposure to nanoparticles in the work environment. Med Pr 2013;64(6):829–845
Źródło:
Medycyna Pracy; 2013, 64, 6; 829-845
0465-5893
2353-1339
Pojawia się w:
Medycyna Pracy
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Nowy sektor pracowniczy – przegląd danych o nanoprodukcji i działalności badawczo-rozwojowej w dziedzinie nanotechnologii w Polsce
New sector of employment – A review of data on nanoproduction, research and development in the field of nanotechnology in Poland
Autorzy:
Popławska, Magdalena
Mikołajczyk, Urszula
Bujak-Pietrek, Stella
Powiązania:
https://bibliotekanauki.pl/articles/2164495.pdf
Data publikacji:
2015-07-27
Wydawca:
Instytut Medycyny Pracy im. prof. dra Jerzego Nofera w Łodzi
Tematy:
nanocząstki
nanotechnologia
nanoobiekty
nanomateriały
zastosowanie
skutki zdrowotne
nanoparticles
nanotechnology
nanoobjects
nanomaterials
application
health effects
Opis:
Nanotechnologia to obecnie jedna z najprężniej rozwijających się dziedzin nauki, dotycząca projektowania, wytwarzania i wykorzystania nanomateriałów. Przez pojęcie ‘nanomateriał’ rozumie się produkt zbudowany ze struktur o wymiarach nanometrowych (1–100 nm). Ze względu na niewielkie wymiary oraz unikatowe właściwości zastosowanie nanomateriałów budzi coraz większe zainteresowanie w różnych dziedzinach przemysłu i nauki. W Polsce istnieje niewiele przedsiębiorstw zajmujących się działalnością nanotechnologiczną. Dominują w tym obszarze głównie jednostki naukowe (m.in. instytuty badawcze, uczelnie wyższe czy jednostki naukowe Polskiej Akademii Nauk). Med. Pr. 2015;66(4):575–582
Nanotechnology is currently one of the fastest developing areas of science, focusing on the design, manufacture and use of nanomaterials. The term “nanomaterial” means any product made of nanometer-size (1–100 nm) structures. Due to the small size and unique properties of the applied nanomaterials there is a growing interest in their aplication in various fields of industry and science. In Poland, there are very few companies that carry on nanotechnology activities. Research institutes, universities and research units of the Polish Academy of Sciences predominate in these activities. Med Pr 2015;66(4):575–582
Źródło:
Medycyna Pracy; 2015, 66, 4; 575-582
0465-5893
2353-1339
Pojawia się w:
Medycyna Pracy
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Nanozłoto – działanie biologiczne i dopuszczalne poziomy narażenia zawodowego
Nanogold – Biological effects and occupational exposure levels
Autorzy:
Świdwińska-Gajewska, Anna M.
Czerczak, Sławomir
Powiązania:
https://bibliotekanauki.pl/articles/2164070.pdf
Data publikacji:
2017-06-27
Wydawca:
Instytut Medycyny Pracy im. prof. dra Jerzego Nofera w Łodzi
Tematy:
nanocząstki
narażenie zawodowe
nanoobiekty
toksyczność
nanozłoto
toksykokinetyka
nanoparticles
occupational exposure
nanoobjects
toxicity
nanogold
toxicokinetics
Opis:
Nanozłoto różni się właściwościami i działaniem biologicznym od złota metalicznego. Może ono znaleźć zastosowanie w wielu dziedzinach, takich jak medycyna, diagnostyka laboratoryjna czy elektronika. Z badań przeprowadzonych na zwierzętach laboratoryjnych wynika, że nanozłoto może się wchłaniać drogą oddechową i pokarmową. Może penetrować w głąb naskórka i skóry właściwej, ale nie ma dowodów, że wchłania się przez skórę. Nanoobiekty złota kumulują się głównie w wątrobie i śledzionie, ale mogą docierać do innych narządów wewnętrznych. Nanozłoto może pokonywać bariery krew–mózg i krew–łożysko. Toksykokinetyka nanozłota zależy od wielkości cząstek, kształtu oraz ładunku powierzchniowego. U zwierząt narażanych drogą inhalacyjną nanocząstki złota wywoływały niewielkie zmiany w płucach. Podawane drogą pokarmową nie powodowały negatywnych skutków zdrowotnych u gryzoni. U zwierząt, którym wstrzykiwano dootrzewnowo nanoobiekty złota, obserwowano zmiany w wątrobie i płucach. Wykazano genotoksyczność nanozłota w badaniach in vitro na komórkach, ale nie potwierdzono takiego działania u zwierząt. Nie zaobserwowano szkodliwego wpływu nanoobiektów na płód czy rozrodczość. Nie ma badań dotyczących działania rakotwórczego nanocząstek złota. Mechanizm działania toksycznego nanozłota może być związany z jego oddziaływaniem z białkami i DNA, co w efekcie prowadzi do indukowania stresu oksydacyjnego lub uszkodzeń materiału genetycznego. Wpływ nanostruktur na zdrowie człowieka nie jest jeszcze w pełni wyjaśniony. Osoby pracujące z nanomateriałami powinny zachować szczególną ostrożność i stosować istniejące zalecenia przy ocenie narażenia zawodowego na nanoobiekty. Przeprowadzona ocena ryzyka powinna stanowić podstawę do podejmowania odpowiednich działań ograniczających potencjalne narażenie na nanometale, w tym również nanozłoto. Med. Pr. 2017;68(4):545–556
Nanogold has different properties and biological activity compared to metallic gold. It can be applied in many fields, such as medicine, laboratory diagnostics and electronics. Studies on laboratory animals show that nanogold can be absorbed by inhalation and ingestion. It can penetrate deep into the epidermis and dermis, but there is no evidence that it is absorbed through the skin. Gold nanoobjects accumulate mainly in the liver and spleen, but they can also reach other internal organs. Nanogold can cross the blood–brain and blood–placenta barriers. Toxicokinetics of nanogold depends on the particle size, shape and surface charge. In animals exposure to gold nanoparticles via inhalation induces slight changes in the lungs. Exposure to nanogold by the oral route does not cause adverse health effects in rodents. In animals after injection of gold nanoobjects changes in the liver and lungs were observed. Nanogold induced genotoxic effects in cells, but not in animals. No adverse effects on the fetus or reproduction were found. There are no carcinogenicity studies on gold nanoparticles. The mechanism of toxicity may be related to the interaction of gold nanoobjects with proteins and DNA, and it leads to the induction of oxidative stress and genetic material damage. The impact of nanostructures on human health has not yet been fully understood. The person, who works with nanomaterials should exercise extreme caution and apply existing recommendations on the evaluation of nanoobjects exposure. The risk assessment should be the basis for taking appropriate measures to limit potential exposure to nanometals, including nanogold. Med Pr 2017;68(4):545–556
Źródło:
Medycyna Pracy; 2017, 68, 4; 545-556
0465-5893
2353-1339
Pojawia się w:
Medycyna Pracy
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Nanosrebro – dopuszczalne poziomy narażenia zawodowego
Nanosilver – Occupational exposure limits
Autorzy:
Świdwińska-Gajewska, Anna M.
Czerczak, Sławomir
Powiązania:
https://bibliotekanauki.pl/articles/2165388.pdf
Data publikacji:
2015-07-27
Wydawca:
Instytut Medycyny Pracy im. prof. dra Jerzego Nofera w Łodzi
Tematy:
nanocząstki
narażenie zawodowe
srebro
nanoobiekty
NDS
nanosrebro
nanoparticles
occupational exposure
silver
nanoobjects
MAC-TWA
nanosilver
Opis:
Nanosrebro historycznie było określane mianem srebra koloidalnego i składa się z cząstek w rozmiarze poniżej 100 nm. Nanocząstki srebra są wykorzystywane w wielu technologiach do tworzenia szerokiego zakresu produktów. Dzięki właściwościom antybakteryjnym znajdują zastosowanie m.in. w wyrobach medycznych (środki opatrunkowe), tekstyliach (odzież dla sportowców, skarpety), tworzywach sztucznych czy materiałach budowlanych (farby). Srebro koloidalne przez wielu uważane jest za idealny środek w walce z drobnoustrojami chorobotwórczymi, który w przeciwieństwie do antybiotyków nie wywołuje skutków ubocznych. Wyniki badań toksykologicznych pokazują jednak, że nanosrebro nie jest obojętne dla organizmu. W narażeniu inhalacyjnym nanocząstki srebra działają szkodliwie głównie na wątrobę i płuca u szczurów. Za toksyczność nanocząstek w dużej mierze odpowiedzialny jest stres oksydacyjny wywołany przez reaktywne formy tlenu, co przyczynia się do cyto- i genotoksycznego działania nanosrebra. U podłoża molekularnego mechanizmu toksyczności nanosrebra leży aktywność powierzchni nanocząstek, która łatwo ulega utlenieniu. Prowadzi to do uwalniania jonów srebra o znanym działaniu toksycznym. Narażenie zawodowe na srebro nanocząstkowe może występować w procesach jego wytwarzania, formulacji, a także stosowania, szczególnie podczas rozpylania. W Polsce, podobnie jak na świecie, nie obowiązują osobne normatywy higieniczne dla nanomateriałów. W niniejszym opracowaniu podjęto próbę oszacowania wartości najwyższego dopuszczalnego stężenia (NDS) dla srebra – frakcji nanoobiektów, która wyniosła: 0,01 mg/m³. Autorzy stoją na stanowisku, że obecnie obowiązująca wartość NDS dla frakcji wdychalnej srebra metalicznego (0,05 mg/m³) nie zapewnia wystarczającej ochrony przed szkodliwym działaniem srebra w postaci nanoobiektów. Med. Pr. 2015;66(3):429–442
Historically, nanosilver has been known as colloidal silver composed of particles with a size below 100 nm. Silver nanoparticles are used in many technologies, creating a wide range of products. Due to antibacterial properties nanosilver is used, among others, in medical devices (wound dressings), textiles (sport clothes, socks), plastics and building materials (paints). Colloidal silver is considered by many as an ideal agent in the fight against pathogenic microorganisms, unlike antibiotics, without side effects. However, in light of toxicological research, nanosilver is not inert to the body. The inhalation of silver nanoparticles have an adverse effect mainly on the liver and lung of rats. The oxidative stress caused by reactive oxygen species is responsible for the toxicity of nanoparticles, contributing to cytotoxic and genotoxic effects. The activity of the readily oxidized nanosilver surface underlies the molecular mechanism of toxicity. This leads to the release of silver ions, a known harmful agent. Occupational exposure to silver nanoparticles may occur in the process of its manufacture, formulation and also usage during spraying, in particular. In Poland, as well as in other countries of the world, there is no separate hygiene standards applicable to nanomaterials. The present study attempts to estimate the value of MAC-TWA (maximum admissible concentration – the time-weighted average) for silver – a nano-objects fraction, which amounted to 0.01 mg/m³. The authors are of the opinion that the current value of the MAC-TWA for silver metallic – inhalable fraction (0.05 mg/m³) does not provide sufficient protection against the harmful effects of silver in the form of nano-objects. Med Pr 2015;66(3):429–442
Źródło:
Medycyna Pracy; 2015, 66, 3; 429-442
0465-5893
2353-1339
Pojawia się w:
Medycyna Pracy
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Nanosrebro – szkodliwe skutki działania biologicznego
Nanosilver – Harmful effects of biological activity
Autorzy:
Świdwińska-Gajewska, Anna M.
Czerczak, Sławomir
Powiązania:
https://bibliotekanauki.pl/articles/2166196.pdf
Data publikacji:
2015-02-20
Wydawca:
Instytut Medycyny Pracy im. prof. dra Jerzego Nofera w Łodzi
Tematy:
nanocząstki
srebro
nanoobiekty
działanie toksyczne
nanosrebro
srebro koloidalne
silver
nanoparticles
toxicity
nanoobjects
nanosilver
colloidal silver
Opis:
Nanosrebro, zwane także srebrem koloidalnym, od wieków było znane i stosowane do zwalczania chorób i przedłużania trwałości produktów spożywczych. Najczęściej występuje w postaci zawiesiny, składającej się z cząstek wielkości < 100 nm. Dzięki swoim specyficznym właściwościom nanocząstki srebra są wykorzystywane w wielu technologiach do tworzenia wyrobów medycznych, tekstyliów, materiałów przewodzących czy ogniw fotowoltaicznych. Wzrastająca popularność zastosowania nanosrebra przyczynia się do zwiększenia liczby osób pracujących w narażeniu na tę substancję. Potencjalnymi drogami narażenia jest droga inhalacyjna, pokarmowa i dermalna. Nanocząstki srebra mogą być wchłaniane przez płuca, jelita, a także przez skórę do krwiobiegu i w ten sposób docierać do narządów wewnętrznych (wątroby, nerek, śledziony, mózgu, serca i jąder). Nanosrebro może wywoływać lekkie podrażnienie oczu i skóry, może także działać jak łagodny alergen na skórę. W narażeniu inhalacyjnym nanocząstki srebra działają głównie na płuca i wątrobę. Wykazano, że nanocząstki srebra mogą działać genotoksycznie na komórki ssaków. Istnieją niepokojące doniesienia na temat szkodliwego działania nanocząstek srebra na rozrodczość zwierząt eksperymentalnych. Narażenie na nanocząstki srebra może działać neurotoksycznie i wpływać na funkcje poznawcze, wywołując zaburzenia pamięci krótkotrwałej i pamięci roboczej. Obowiązujacy obecnie w Polsce normatyw higieniczny dla frakcji wdychalnej srebra (najwyższe dopuszczalne stężenie) wynosi 0,05 mg/m³. W świetle wyników badań toksykologicznych nad działaniem biologicznym nanocząstek srebra uzasadniona wydaje się potrzeba zaktualizowania normatywów higienicznych dla srebra z wyodrębnieniem frakcji nanocząstek. Med. Pr. 2014;65(6):831–845
Nanosilver, also identified as colloidal silver, has been known and used for ages to combat diseases or prolong food freshness. It usually occurs in the form of a suspension consisting of particles of size < 100 nm. Due to its specific properties, silver nanoparticles are used in many technologies to produce medical devices, textiles, conductive materials or photovoltaic cells. The growing popularity of nanosilver applications increases the number of people occupationally exposed to this substance. Potential exposure routes for silver nanoparticles are through dermal, oral and inhalation pathways. Silver nanoparticles may be absorbed through the lungs, intestine, and through the skin into circulation and thus may reach such organs as the liver, kidney, spleen, brain, heart and testes. Nanosilver may cause mild eyes and skin irritations. It can also act as a mild skin allergen. Inhalation of silver nanoparticles mainly affects the lungs and liver. It has been demonstrated that silver nanoparticles may be genotoxic to mammalian cells. There are some alarming reports on the adverse effects of silver nanoparticles on reproduction of experimental animals. Exposure to silver nanoparticles may exert a neurotoxic effect and affect cognitive functions, causing the impairment of short-term and working memory. Maximum admissible concentration (MAC) for the inhalable fraction of silver of 0.05 mg/m³ is currently binding in Poland. In light of toxicological studies of silver nanoparticles it seems reasonable to update the hygiene standards for silver with nanoparticles as a separate fraction. Med Pr 2014;65(6):831–845
Źródło:
Medycyna Pracy; 2014, 65, 6; 831-845
0465-5893
2353-1339
Pojawia się w:
Medycyna Pracy
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Nanorurki węglowe – charakterystyka substancji, działanie biologiczne i dopuszczalne poziomy narażenia zawodowego
Carbon nanotubes – Characteristic of the substance, biological effects and occupational exposure levels
Autorzy:
Świdwińska-Gajewska, Anna M.
Czerczak, Sławomir
Powiązania:
https://bibliotekanauki.pl/articles/2164120.pdf
Data publikacji:
2017-03-24
Wydawca:
Instytut Medycyny Pracy im. prof. dra Jerzego Nofera w Łodzi
Tematy:
narażenie zawodowe
nanoobiekty
toksyczność
nanorurki węglowe
nanowłókna
narażenie inhalacyjne
occupational exposure
nanoobjects
toxicity
carbon nanotubes
nanofibers
inhalation
Opis:
Nanorurki węglowe (carbon nanotubes – CNT) są grupą nanoobiektów zróżnicowaną pod względem budowy, rozmiaru (długości i średnicy), kształtu oraz własności. Dzięki wielu interesującym właściwościom znajdują szerokie zastosowanie w różnych dziedzinach. Rosnące zainteresowanie tymi strukturami pociąga za sobą zwiększenie liczby osób pracujących w narażeniu na CNT. Ekspozycja zawodowa na nanorurki może występować zarówno w laboratoriach prowadzących nad nimi badania, jak i w zakładach produkujących CNT lub zawierające je nanokompozyty. Poziomy stężeń liczbowych CNT w pobliżu źródła ich emisji mogą sięgać wielkości rzędu 10⁷ cząstek/cm³. Wartości te jednak znacznie się obniżają po zastosowaniu odpowiedniej wentylacji. Z badań na zwierzętach wynika, że główną drogą narażenia jest inhalacja. Nie ma dowodów na wchłanianie przez skórę. Nanorurki węglowe podawane drogą pokarmową w znacznym stopniu są wydalane z kałem. Nie opisano metabolizmu nanorurek węglowych. W badaniach inhalacyjnych na zwierzętach CNT wywoływały głównie stan zapalny, na skutek stresu oksydacyjnego, prowadząc przede wszystkim do zmian w płucach. U zwierząt narażanych drogą dermalną główny efekt to stres oksydacyjny wywołujący miejscowy stan zapalny. Najmniej objawów toksyczności zaobserwowano u zwierząt eksponowanych drogą pokarmową. Nanorurki węglowe nie indukowały mutacji w testach bakteryjnych, jednak działały genotoksycznie w wielu testach prowadzonych zarówno na komórkach in vitro, jak również u narażanych myszy in vivo. Działanie embriotoksyczne CNT zależy głównie od ich modyfikacji, natomiast rakotwórcze – od rozmiaru i sztywności. Zaproponowane przez światowych ekspertów wartości dopuszczalnych poziomów narażenia zawodowego dla CNT mieszczą się w przedziale 1–80 μg/m³. Różnorodność skutków działania CNT skłania do tego, żeby każdy rodzaj nanorurek był traktowany jak oddzielna substancja wymagająca osobnego szacowania normatywu higienicznego. Med. Pr. 2017;68(2):259–276
Carbon nanotubes (CNTs) are a diverse group of nano-objects in terms of structure, size (length, diameter), shape and characteristics. The growing interest in these structures is due to the increasing number of people working in exposure to CNTs. Occupational exposure to carbon nanotubes may occur in research laboratories, as well as in plants producing CNTs and their nanocomposites. Carbon nanotubes concentration at the emission source may reach 10⁷ particles/cm³. These values, however, are considerably reduced after the application of adequate ventilation. Animal studies suggest that the main route of exposure is inhalation. Carbon nanotubes administered orally are largely excreted in the feces. In animals exposed by inhalation, CNTs caused mainly inflammation, as a result of oxidative stress, leading above all to changes in the lungs. The main effect of animal dermal exposure is oxidative stress causing local inflammation. In animals exposed by ingestion the mild or no toxicity was observed. Carbon nanotubes did not induce mutations in the bacterial tests, but they were genotoxic in a series of tests on cells in vitro, as well as in exposed mice in vivo. Embryotoxicity of nanotubes depends mainly on their modifications and carcinogenicity – primarily on the CNT size and its rigidity. Occupational exposure limits for CNTs proposed by world experts fall within the range of 1–80 μg/m³. The different effects of various kinds of CNT, leads to the conclusion that each type of nanotube should be treated as a separate substance with individual estimation of hygienic normative. Med Pr 2017;68(2):259–276
Źródło:
Medycyna Pracy; 2017, 68, 2; 259-276
0465-5893
2353-1339
Pojawia się w:
Medycyna Pracy
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
NECID : baza zawierająca dane o narażeniu na nanoobiekty oraz informacje kontekstowe
NECID : Nano Exposure and Contextual Information Database
Autorzy:
Oberbek, P.
Powiązania:
https://bibliotekanauki.pl/articles/137813.pdf
Data publikacji:
2018
Wydawca:
Centralny Instytut Ochrony Pracy
Tematy:
nanocząstki
nanoobiekty
baza NECID
NOAA
grupa PEROSH
narażenie
nanotechnologie
nanoparticles
nanoobjects
NECID database
PEROSH group
exposure
nanotechnologies
Opis:
Nanotechnologia jest prężnie rozwijającą się dziedziną nauki umożliwiającą projektowanie i otrzymywanie nowych, dotychczas nieznanych, materiałów nanostrukturalnych o unikatowych właściwościach i wszechstronnym zastosowaniu. Mimo wielu potencjalnych korzyści wynikających z zastosowania nanoobiektów może ono również zagrażać ludzkiemu zdrowiu. Ze względu na: rozbieżne wyniki publikowanych badań dotyczących zagrożenia zdrowotnego powodowanego przez nanoobiekty, różne strategie pomiaru narażenia oraz nieujednoliconą i ograniczoną dokumentację, możliwości porównywania różnych pomiarów, a także zastosowania wyników badań do symulacji i budowy modeli matematycznych są ograniczone. W celu zharmonizowania: dokumentacji, wyników badań, a także wyznaczników narażenia i kontekstu pomiarów narażenia opracowana została baza NECID (Nano Exposure and Contextual Information Database) – platforma cyfrowej dokumentacji dotyczącej narażenia na nanoobiekty w miejscach pracy.
Nanotechnology is a rapidly evolving field allowing to design and obtain new, previously unknown nanostructured materials with unique properties and broad application. In addition to the wide range of potential benefits, the use of nanoobjects can also endanger human health. Due to the divergent results of published studies about impact of nanoobjects on health, different exposure measurement strategies and non-uniform and limited documentation the possibilities for comparing different measurements, and as well the use of research results to simulate and construct mathematical models are limited. In order to harmonize documentation, research results, exposure indicators and context for exposure measurement, the NECID (Nano Exposure and Contextual Information Database) database, a digital documentation platform for occupational exposure to nanoparticles, has been developed.
Źródło:
Podstawy i Metody Oceny Środowiska Pracy; 2018, 2 (96); 25-34
1231-868X
Pojawia się w:
Podstawy i Metody Oceny Środowiska Pracy
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Nanoobiekty
Nano-objects at workplaces
Autorzy:
Jankowska, E.
Powiązania:
https://bibliotekanauki.pl/articles/137997.pdf
Data publikacji:
2011
Wydawca:
Centralny Instytut Ochrony Pracy
Tematy:
nanotechnologie
nanomateriały
nanoobiekty
powietrze na stanowiskach pracy
ocena potencjalnego narażenia
nanotechnology
nanomaterials
nano-objects
evaluation of potential exposure
Opis:
W artykule przedstawiono niektóre zagadnienia związane z nanoobiektami (nazwa zwyczajowa: nanocząstki) i metodami badania ich parametrów. Podano definicje, przepisy prawne i normy oraz projekty badawcze ukierunkowane na uzyskanie wyników związanych z rzeczywistym narażeniem na nanoobiekty. Przedstawiono także przykładowe podejście do oceny potencjalnego narażenia na nanoobiekty występujące w środowisku pracy.
In the article some issues connected with nanoobjects (vernacular of the "nanoparticles") and methods of investigation of nanoobjects parameters were presented. Definitions, provisions of law and norms and research projects directed at achieving results associated with real exposure to nanoobjects were given. An also model attempt at the evaluation of potential exposure to nanoobjects in a workplace was described.
Źródło:
Podstawy i Metody Oceny Środowiska Pracy; 2011, 4 (70); 7-20
1231-868X
Pojawia się w:
Podstawy i Metody Oceny Środowiska Pracy
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Nanocząstki ditlenku tytanu – dopuszczalne poziomy narażenia zawodowego
Titanium dioxide nanoparticles: Occupational exposure limits
Autorzy:
Świdwińska-Gajewska, Anna M.
Czerczak, Sławomir
Powiązania:
https://bibliotekanauki.pl/articles/2166219.pdf
Data publikacji:
2014-10-30
Wydawca:
Instytut Medycyny Pracy im. prof. dra Jerzego Nofera w Łodzi
Tematy:
ditlenek tytanu
nanoobiekty
nanocząstki
narażenie zawodowe
najwyższe dopuszczalne stężenie
titanium dioxide
nanoobjects
nanoparticles
occupational exposure
maximum admissible concentration
Opis:
Ditlenek tytanu (TiO₂) jest produkowany w Polsce jako substancja wielkotonażowa. Wykorzystywany jest przede wszystkim jako pigment do farb i lakierów, tworzyw sztucznych oraz papieru, ale także jako dodatek do żywności i farmaceutyków. Coraz szersze zastosowanie znajdują nanocząstki TiO₂ – głównie w kosmetykach, tkaninach i tworzywach sztucznych – jako bloker promieniowania ultrafioletowego. Zwiększa się tym samym ryzyko narażenia pracowników na nanocząstki ditlenku tytanu w środowisku pracy. Ze względu na brak odpowiednich metod pomiarowych oraz wyodrębnionej frakcji nanoobiektów, dla których mogą być opracowywane normatywy higieniczne, nie ustalono najwyższych dopuszczalnych stężeń w powietrzu środowiska pracy dla cząstek < 100 nm, które w głównej mierze są odpowiedzialne za potencjalnie szkodliwe działanie ditlenku tytanu. Eksperci Narodowego Instytutu Bezpieczeństwa i Higieny Pracy (National Institute for Occupational Safety and Health – NIOSH) zaproponowali dopuszczalny poziom narażenia dla nanocząstek ditlenku tytanu w wysokości 0,3 mg/m³, a eksperci Organizacji Rozwoju Nowych Energii i Technologii Przemysłowych (New Energy and Industrial Technology Development Organization – NEDO) – 0,6 mg/m³. Autorzy niniejszego opracowania na podstawie dostępnych danych i w oparciu o obowiązujące metody wyznaczania wartości normatywów higienicznych w Polsce oszacowali, że wartość najwyższego dopuszczalnego stężenia (NDS) w powietrzu środowiska pracy dla nanocząstek TiO₂ może wynosić 0,3 mg/m³. Med. Pr. 2014;65(3):407–418
Titanium dioxide (TiO₂) is produced in Poland as a high production volume chemical (HPVC). It is used mainly as a pigment for paints and coatings, plastics, paper, and also as additives to food and pharmaceuticals. Titanium dioxide nanoparticles are increasingly applied in cosmetics, textiles and plastics as the ultraviolet light blocker. This contributes to a growing occupational exposure to TiO₂ nanoparticles. Nanoparticles are potentially responsible for the most adverse effects of titanium dioxide. Due to the absence of separate fraction of nanoobjects and appropriate measurement methods the maximum admissible concentrations (MAC) for particles < 100 nm and nano-TiO₂ cannot be established. In the world there are 2 proposals of occupational exposure levels for titanium dioxide nanoparticles: 0.3 mg/m³, proposed by the National Institute for Occupational Safety and Health (NIOSH), and 0.6 mg/m³, proposed by experts of the New Energy and Industrial Technology Development Organization (NEDO). The authors of this article, based on the available data and existing methods for hygiene standards binding in Poland, concluded that the MAC value of 0.3 mg/m³ for nanoparticles TiO₂ in the workplace air can be accepted. Med Pr 2014;65(3):407–418
Źródło:
Medycyna Pracy; 2014, 65, 3; 407-418
0465-5893
2353-1339
Pojawia się w:
Medycyna Pracy
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Metody generowania nanoobiektów o stabilnych stężeniach : przegląd piśmiennictwa
Methods of generating nano-objects with stable concentration : literature review
Autorzy:
Kaczorowska, B.
Powiązania:
https://bibliotekanauki.pl/articles/138333.pdf
Data publikacji:
2015
Wydawca:
Centralny Instytut Ochrony Pracy
Tematy:
nanoobiekty
generator aerozolu
neutralizator aerozolu
piec rurowy
wysokotemperaturowy piec
nano-objects
aerosol generators
aerosol neutralizer
tube furnace
high-temperature furnaces
Opis:
Nanotechnologia jest nowoczesną dziedziną nauki, łączącą dotychczasowe osiągnięcia także innych nauk: chemii, mechaniki, biologii, fizyki oraz informatyki. Nanoobiekty, w związku z bardzo małymi wymiarami, w dosyć łatwy sposób pokonują barierę ustrojową człowieka i niestety, szybko przenikają do organizmu, osiadając przede wszystkim w płucach. W artykule dokonano przeglądu piśmiennictwa w zakresie metod generowania nanoobiektów o stabilnych stężeniach do potrzeb walidacji przyrządów pomiarowych, wykorzystywanych do badania w czasie rzeczywistym parametrów nanoobiektów. Omówiono w artykule metody generowania nanoobiektów z zastosowaniem technik nukleacji oraz wyładowania iskrowego. Wiedza na temat generowania takich cząstek może być wykorzystywana przy prognozowaniu narażenia na nanoobiekty w miejscu pracy, jak również przy projektowaniu procesów technologicznych w taki sposób, aby ograniczyć zagrożenia związane z uwalnianiem się nanoobiektów.
Nanotechnology is a modern, wide field of science, which combines the achievements of chemistry, engineering, biology, physics and computer science. Unfortunately, nanoparticles, because of their small sizes in a relatively way overcame the barrier of the human systematic compartment and rapidly penetrate the body and settle mainly in lungs. This paper presents a literature review on methods of generating nano-objects with stable concentrations used for the validation of measuring devices for testing parameters of nano-objects in real-time. Methods of generating nano-objects using the techniques of nucleation and spark discharge were analyzed during the literature review. Knowledge of how to generate such particles can be used in predicting exposure to nano-objects in a workplace as well as in designing technological processes in such a way to reduce the risks connected with releasing nanoparticles.
Źródło:
Podstawy i Metody Oceny Środowiska Pracy; 2015, 3 (85); 5-14
1231-868X
Pojawia się w:
Podstawy i Metody Oceny Środowiska Pracy
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Methodology for generating stable concentrations of nano-objects
Autorzy:
Kaczorowska, B.
Powiązania:
https://bibliotekanauki.pl/articles/115572.pdf
Data publikacji:
2016
Wydawca:
Fundacja na Rzecz Młodych Naukowców
Tematy:
nano-objects
aerosol generators
aerosol neutralizer
high-temperature furnace
validation
number concentration
nanoobiekty
generator aerozolu
neutralizator aerozolu
piec wysokotemperaturowy
walidacja
ilość stężeń
Opis:
With an increasing number of companies using and producing nanomaterials, also the number of workers who are exposed to nano-objects is increasing. Nano-objects, because of their very small size, can very easily overcome the human systemic barrier and rapidly penetrate into the body, settling mainly in the lungs. It is important to establish standards for nanomaterials, because of the health and safety of workers who are exposed to nanomaterials in their workplace. During the exposure evaluation, it is important to determine the parameters of nano-objects in real-time and thus it is necessary to validate the measuring apparatus used during researches. The purpose of the project is to provide the possibility of obtaining stable concentrations of the nano-objects to validate the measuring apparatus for real-time testing of parameters of the nano-objects. The literature review [1-4] on methodology for generating nano-objects using techniques of nucleation and spark discharge was made. After analyzing different models, which were found in the literature [1-4], an experimental set-up was created. The experimental set-up is composed of: an aerosol generator, an aerosol neutralizer, a high-temperature furnace, a heat exchanger, a dilution system and a sampling chamber. Our set-up has many advantages: –– it can generate different types of nano-objects (carbon, cooper and silver nano-objects) with stable concentration; –– it can generate nano-objects with different concentration; –– it allows to take four samples at the same time and measure their parameters by using various measurement apparatus. Thanks to the built set-up, it will be possible to validate measuring apparatus for testing parameters of nano-objects in real-time using an ELPI+ (Dekati) as a reference apparatus.
Źródło:
Challenges of Modern Technology; 2016, 7, 3; 20-24
2082-2863
2353-4419
Pojawia się w:
Challenges of Modern Technology
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Simulation of polymer injection molding: A new practical approach to improve computation Accuracy
Autorzy:
Narowski, P.
Wilczynski, K.
Powiązania:
https://bibliotekanauki.pl/articles/115621.pdf
Data publikacji:
2016
Wydawca:
Fundacja na Rzecz Młodych Naukowców
Tematy:
nano-objects
aerosol generators
aerosol neutralizer
high-temperature furnace
validation
number concentration
nanoobiekty
generator aerozolu
neutralizator aerozolu
piec wysokotemperaturowy
walidacja
ilość stężeń
Opis:
Simulation of injection molding of polymeric materials is still a series scientific and engineering problem. The quality of the input data is crucial for computation accuracy. The original, relatively simple tool has been designed to validate simulations. This allows a fast identification of the critical input data, and next their proper adjustment to computations. FEM simulations have been compared with directly registered pictures of cavity filling process in a special injection mold with a sight-glass.
Źródło:
Challenges of Modern Technology; 2016, 7, 3; 25-28
2082-2863
2353-4419
Pojawia się w:
Challenges of Modern Technology
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Zasady zarządzania ryzykiem zawodowym związanym z narażeniem na nanoobiekty, ich aglomeraty i agregaty (NOAA)
Principles of occupational risk management related to exposure to nano-objects, their agglomerates and aggregates (NOAA)
Autorzy:
Jankowska, E.
Powiązania:
https://bibliotekanauki.pl/articles/137727.pdf
Data publikacji:
2015
Wydawca:
Centralny Instytut Ochrony Pracy
Tematy:
nanomateriały
nanoobiekty
powietrze na stanowiskach pracy
zasady zarządzania ryzykiem zawodowym
ocena narażenia
nano-objects
principles of occupational risk management
evaluation of exposure
Opis:
W artykule przedstawiono zasady zarządzania ryzykiem zawodowym i praktyczne rady dotyczące ich wdrożenia, zgodnie z zaleceniami przedstawionymi w specyfikacjach technicznych: ISO/TS 12901-1:2012 Nanotechnologies – Occupational risk management applied to engineered nanomaterials –Part 1. Principles and approaches i ISO/TS 12901-2:2014 Nanotechnologies – Occupational risk management applied to engineered nanomaterials – Part 2. Use of the control banding approach. Stwierdzono, że ponieważ obecnie brak jest powszechnie akceptowanych metod do oceny ryzyka zawodowego związanego z narażeniem na NOAA, których podstawą są dane pomiarowe określane w rzeczywistych warunkach narażenia, oraz wartości referencyjnych (dopuszczalnych) w odniesieniu do poszczególnych NOAA występujących w środowisku pracy, to w procesie zarządzania ryzykiem zawodowym związanym z narażeniem na NOAA może być stosowana metoda bazująca na ustalaniu kategorii zagrożenia (HB) i szacowaniu poziomu narażenia (EB) przedstawiona w specyfi kacji technicznej ISO/TS 12901-2.
The article presents principles of occupational risk management and practical advice on their implementation in accordance with the recommendations proposed in the technical specifications ISO/TS 12901-1:2012 Nanotechnologies – Occupational risk management applied to engineered nanomaterials – Part 1. Principles and approaches and ISO/TS 12901-2:2014 Nanotechnologies – Occupational risk management applied to engineered nanomaterials – Part 2. Use of the control banding approach. Because there are no commonly accepted methods to assess the occupational risks associated with exposure to NOAA, based on the measurement data determined in the real conditions of exposure, and reference values (limits) for each NOAA in the working environment method based on determining hazard category (HB) and estimating the level of exposure (EB) presented in ISO/TS 12901-2 can be used in the process of occupational risk management related to exposure to NOAA.
Źródło:
Podstawy i Metody Oceny Środowiska Pracy; 2015, 2 (84); 17-36
1231-868X
Pojawia się w:
Podstawy i Metody Oceny Środowiska Pracy
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Harmonizacja strategii pomiarowych do oceny narażenia na: nanoobiekty, ich aglomeraty i agregaty (NO A A)
Harmonizing measurement strategies for assessing exposure to nano-objects and their agglomerates and aggregates (NOAA)
Autorzy:
Jankowska, E.
Powiązania:
https://bibliotekanauki.pl/articles/138241.pdf
Data publikacji:
2014
Wydawca:
Centralny Instytut Ochrony Pracy
Tematy:
nanotechnologie
nanomateriały
nanoobiekty
NOAA
powietrze na stanowiskach pracy
strategie pomiarowe
ocena narażenia
nanotechnology
nanomaterials
nano-objects
workplace air
measurement strategies
evaluation of exposure
Opis:
W artykule przedstawiono zagadnienia, które powinny być uwzględnione podczas harmonizacji metod pomiarów wykonywanych w rzeczywistych warunkach na stanowiskach pracy w kontekście oceny narażenia i ryzyka zawodowego oraz doboru właściwych środków ochrony. Stwierdzono, że istotnym zagadnieniem jest również harmonizacja w zakresie: analizowania, oceny i opracowywania sprawozdań dotyczących danych o narażeniu na: nanoobiekty, ich aglomeraty i agregaty (NOAA), podczas badań wykonywanych w rzeczywistych warunkach ich emisji na stanowiskach pracy oraz określenie trybu postępowania podczas kalibrowania aparatury pomiarowej stosowanej w badaniach emisji NOAA w czasie rzeczywistym. Bardzo ważnym działaniem, z uwagi na opracowywanie baz danych, jest przechowywanie informacji dotyczących narażenia na NOAA i oceny ryzyka zawodowego związanego z występowaniem NOAA w środowisku pracy. Informacje te mogą stanowić podstawę do przyszłego rozwoju, kalibracji i walidacji modeli narażenia lub budowania scenariuszy narażenia.
This article discusses harmonizing methods of measurements done in real conditions at workstations in the context of assessing exposure and occupational risk and selecting appropriate protection measures. It is important to harmonize the analysis, evaluation and reporting of data on exposure to nanoobjects during measurements done in real conditions and to determine procedures for calibrating equipment for measuring emission of nanoobjects in real time. In the context of the development of the database, it is also very important to store information on exposure to nanoobjects and on risk assessment related to the presence of nanoobjects in the working environment, 'lilis information can provide a basis for future development, calibration and validation of models or for building exposure scenarios.
Źródło:
Podstawy i Metody Oceny Środowiska Pracy; 2014, 4 (82); 7-21
1231-868X
Pojawia się w:
Podstawy i Metody Oceny Środowiska Pracy
Dostawca treści:
Biblioteka Nauki
Artykuł

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies