Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "nano-emulsions" wg kryterium: Temat


Wyświetlanie 1-3 z 3
Tytuł:
Studies on the formation of O/W nano-emulsions, by low-energy emulsification method, suitable for cosmeceutical applications
Autorzy:
Jaworska, Małgorzata
Sikora, Elżbieta
Zielina, Michał
Ogonowski, Jan
Powiązania:
https://bibliotekanauki.pl/articles/1039485.pdf
Data publikacji:
2013
Wydawca:
Polskie Towarzystwo Biochemiczne
Tematy:
nano-emulsions
crodamol GTCC
crodamol PC
oleic acid
Opis:
The formation of oil/water (O/W) nano-emulsions suitable for cosmeceutical application was studied. Nano-emulsions were prepared by using phase inversion composition (PIC) method, one of the low-energy emulsification methods. The process consist of stepwise water addition to oil/surfactant mixture, at T = 25°C. Caprylic/capric triglycerides (GTCC), propylene glycol dicaprylate/dicaprate (PC) and oleic acid (OA) were applied as an oil phase. Polysorbate 80 was used as the surfactant. Kinetic stability of the nano-emulsions was analyzed by measuring droplet size as a function of time for different oil/surfactant ratio. The particles size distribution was analyzed by means DLS measurement technique (Dynamic Light Scattering), using Zetasizer Nano ZS (Malvern Instruments, UK). One of triterpenoic acid, practically non-water soluble substance was selected as an active and incorporated into the stable formulation. The obtained results proved that the nanoemulsion NE-T80-GTCC-20:80 based on caprylic/capric triglycerides with the oil/surfactant ratio O/S = 2 0:80 and the droplet size r = 25 nm was the most stable one and additionally showed the highest solubilisation capacity for the triterpene.
Źródło:
Acta Biochimica Polonica; 2013, 60, 4; 779-782
0001-527X
Pojawia się w:
Acta Biochimica Polonica
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Study of O/W micro- and nano-emulsions based on propylene glycol diester as a vehicle for geranic acid
Autorzy:
Jaworska, Małgorzata
Sikora, Elżbieta
Ogonowski, Jan
Konieczna, Monika
Powiązania:
https://bibliotekanauki.pl/articles/1039096.pdf
Data publikacji:
2015
Wydawca:
Polskie Towarzystwo Biochemiczne
Tematy:
nano-emulsions
microemulsion
Crodamol PC
geranic acid
release profile
Opis:
Nano- and microemulsions containing as the oil phase caprylic/capric propylene glycol diesters (Crodamol PC) were investigated as potential vehicle for controlled release of geranic acid. The influence of emulsifiers and co-surfactants on stability of the emulsions was investigated. Different kind of polysorbates (ethoxylated esters of sorbitan and fatty acids) were applied as the emulsifiers. The short-chain alcohols (ethanol, 1-propanol, 1-butanol) were used as co-surfactants. The emulsions were prepared at ambient temperature (25°C), by the phase inversion composition method (PIC). The stable O/W high dispersed emulsion systems based on Crodamol PC, of mean droplets size less than 200 nm, were prepared. Microemulsions stabilized by the mixture of Polisorbat 80 and 1-butanol were characterized by the largest degree of dispersion (137 nm) and the lowest PDI value (0.094), at surfactant/co-surfactant: oil weight ratio 90:10. The stable nano-emulsion (mean droplet size of 33 nm) was obtained for surfactant: oil (S:O) weight ratio 90:10, without co-surfactant addition. This nano-emulsion was chosen to release studies. The obtained results showed that the prepared stable nano-emulsion can be used as a carrier for controlled release of geranic acid. The active substance release from the nano-emulsion and the oil solution, after 24 hours was 22%.
Źródło:
Acta Biochimica Polonica; 2015, 62, 2; 229-233
0001-527X
Pojawia się w:
Acta Biochimica Polonica
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Nano-emulsions as vehicles for topical delivery of forskolin
Autorzy:
Miastkowska, Małgorzata
Sikora, Elżbieta
Lasoń, Elwira
Garcia-Celma, Maria
Escribano-Ferrer, Elvira
Solans, Conxita
Llinas, Meritxell
Powiązania:
https://bibliotekanauki.pl/articles/1038566.pdf
Data publikacji:
2017
Wydawca:
Polskie Towarzystwo Biochemiczne
Tematy:
Forskolin
nano-emulsions
medium chain triglycerides
in vitro skin permeation
Opis:
Two O/W forskolin-loaded nano-emulsions (0.075% wt.) based on medium chain triglycerides (MCT) and stabilized by a nonionic surfactant (Polysorbate 80 or Polysorbate 40) were studied as forskolin delivery systems. The nano-emulsions were prepared by the PIC method. The mean droplet size of the nano-emulsions with Polysorbate 80 and Polysorbate 40 with oil/surfactant (O/S) ratios of 20/80 and 80% water concentration, measured by Dynamic Light Scattering (DLS), was of 118 nm and 111 nm, respectively. Stability of the formulations, as assessed by light backscattering for 24 h, showed that both nano-emulsions were stable at 25°C. Studies of forskolin in vitro skin permeation from the nano-emulsions and from a triglyceride solution were carried out at 32°C, using Franz-type diffusion cells. A mixture of PBS/ethanol (60/40 v/v) was used as a receptor solution. The highest flux and permeability coefficient was obtained for the system stabilized with Polysorbate 80 (6.91±0.75 µg · cm-2·h-1 and 9.21 · 10-3±1.00 · 10-3 cm · h-1, respectively) but no significant differences were observed with the flux and permeability coefficient value of forskolin dissolved in oil. The obtained results showed that the nano-emulsions developed in this study could be used as effective carriers for topical administration of forskolin.
Źródło:
Acta Biochimica Polonica; 2017, 64, 4; 713-718
0001-527X
Pojawia się w:
Acta Biochimica Polonica
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-3 z 3

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies