Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "nano fluid" wg kryterium: Temat


Wyświetlanie 1-6 z 6
Tytuł:
Design of a CPU Heat Sink with Minichannel-Fins & its Thermal Analysis
Autorzy:
Arzutuğ, Mehmet Emin
Powiązania:
https://bibliotekanauki.pl/articles/27315656.pdf
Data publikacji:
2023
Wydawca:
Zachodniopomorski Uniwersytet Technologiczny w Szczecinie. Wydawnictwo Uczelniane ZUT w Szczecinie
Tematy:
CPU
Central Processing Unit
heat sink
cooling
nano fluid
fin
Opis:
In this paper, the design and the thermal analysis of a tribled microprocessor cooler combining the advantages of strong swirl flow and minichannel-fins and CuO nanofluid, have been presented. It is thought that the results will contribute to the understanding of the effects of parameters on the cooling flux of the heat sink and the decline at the microprocessor temperature, as Reynolds number in the minichannels and CuO % volume fraction. The results have exhibited that the total performance of the heat sink cooled with the mixture of water–CuO-EG nanofluids increases with the increase of Re number and the %load of nanoparticles in the coolant. It has been determined that the energy withdrawn from the microprocessor was 241 times higher than the energy generated for maximum CuO load and Re number conditions. Besides, the highest temperature decrease has been measured at the maximum CuO load value and maximum Re number.
Źródło:
Polish Journal of Chemical Technology; 2023, 25, 3; 89--100
1509-8117
1899-4741
Pojawia się w:
Polish Journal of Chemical Technology
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
A novel internal combustion engine without crankshaft and connecting rod mechanisms
Autorzy:
Fijałkowski, B.
Powiązania:
https://bibliotekanauki.pl/articles/247269.pdf
Data publikacji:
2011
Wydawca:
Instytut Techniczny Wojsk Lotniczych
Tematy:
internal combustion engine
mechatronic commutator
nano-magneto-rheological fluid
Opis:
A novel internal combustion engine without a crankshaft and connecting rod mechanisms, which the author would like to present, is partially acting on another law of physics. The invention titled 'Nano-Magneto-Rheological Mechatronic Commutator Internal Combustion Engine', which is concisely termed the Fijalkowski engine by some, is based on a completely new propulsion engineering solution that has no analogies in the world. Thus, this paper focuses on a novel internal combustion, which may use a nano-magneto-rheological mechatronic commutator that may replace the crankshaft and connecting rod (conrod) mechanisms. This mechatronic commutator may let nano -magneto-rheological rotary ratchets oscillate in a controlled wobble while keeping the output shaft spinning smoothly; and although opposed pistons and opposed cylinders similar to those in automotive 'boxer' engines may power the Fijalkowski engine, it may also use opposed cylinders containing four pairs of two end-to-end opposed pistons for higher power densities. The nano-magneto-rheological mechatronic commutator is used for converting between one form of mechanical motion that is linear, reciprocating motion of pistons and another -- that is the rotary motion of the output shaft.
Źródło:
Journal of KONES; 2011, 18, 4; 91-104
1231-4005
2354-0133
Pojawia się w:
Journal of KONES
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Stability analysis of hybrid Al2O3-TiO2 nano-cutting fluids
Autorzy:
Arifuddin, A.
Redhwan, A.A.M.
Syafiq, A.M.
Zainal Ariffin, S.
Aminullah, A.R.M.
Azmi, W.H.
Powiązania:
https://bibliotekanauki.pl/articles/24200583.pdf
Data publikacji:
2022
Wydawca:
Stowarzyszenie Komputerowej Nauki o Materiałach i Inżynierii Powierzchni w Gliwicach
Tematy:
Al2O3-TiO2
nano cutting fluid
stability analysis
nano płyn do cięcia
analiza stabilności
Opis:
Purpose: This paper is to study the stability of the current combination of hybrid nano-cutting fluids due to the recent progress in the analysis of nano-cutting fluids, such as the assessment methods for the stability of nano-cutting fluids, have revealed that instability is a common problem associated with nano cutting fluids. Design/methodology/approach: Five samples of 0.001 vol% that are suitable to be tested at UV-Vis machine, Al2O3–TiO2 hybrid nano-cutting fluid was prepared using a one-step process with the help of a magnetic stirrer to stir for 30 minutes with different sonication time to determine the best or optimum sonication time for this hybrid nano-cutting fluid. Stability of nano-cutting fluids was analyses using UV–Vis spectrophotometer (0.001%, 0.0001%, 0.00001%), visual sedimentation (1%, 2%, 3%, 4%), TEM photograph capturing techniques (2%) and zeta potential analysis (0.001%, 0.00001%), that used different volume concentration that is suitable for each type of stability analysis. Findings: The stability analysis reveals that the best sonication time is 90 minutes, and the UV-vis spectrophotometer shows the stability of all samples is above 80% during a month compared to the initial value. Further, visual sedimentation shows good stability with minimum sedimentation and colour separation only. The zeta potential value also shows great stability with a value of 37.6 mV. It is found that the hybrid nano-cutting fluid is stable for more than a month when the nano is suspended in the base fluid of conventional coolant. Research limitations/implications: The result in this paper is based on the experimental study of Al2O3-TiO2/CNC coolant base hybrid nano-cutting fluid for a month. However, to further validate the results presented in this paper, it is recommended to prolong the stability assessment time for six months for longer shelf life. Practical implications: The finding of this experimental study can be useful for high-precision product machining using similar CNC coolants, especially for aircraft and airspace applications for machining parts. Originality/value: No thorough stability assessment using all four types of stability analysis is done on Al2O3-TiO2/CNC Coolant base hybrid nano cutting fluid.
Źródło:
Archives of Materials Science and Engineering; 2022, 117, 1; 5--12
1897-2764
Pojawia się w:
Archives of Materials Science and Engineering
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Preparation and characterization of nano magnetic fluid for automotive applications
Autorzy:
Thanikachalam, J.
Nagaraj, P.
Karthikeyan, S.
Powiązania:
https://bibliotekanauki.pl/articles/379453.pdf
Data publikacji:
2019
Wydawca:
Stowarzyszenie Komputerowej Nauki o Materiałach i Inżynierii Powierzchni w Gliwicach
Tematy:
nano magnetic fluid
yield stress
nickel nanoparticles
viscosity
sedimentation
Rate
płyn nano magnetyczny
granica plastyczności
nanocząstki niklu
lepkość
szybkość sedymentacji
Opis:
Purpose: of this paper is to prepare a nano magnetic fluids with nano additives to have the combined characteristics of high yield stress and better magnetic properties for smart vehicles. This study focuses on increasing the sedimentation time of the fluid using suitable nano additive nickel along with graphene as fillers. Design/methodology/approach: Magnetic nano sized nickel particle based electromagneto-rheological fluid was prepared and graphene nanoparticle with thickness less than 10nm was introduced as an additive to reduce its sedimentation. This added plate like graphene acts as filler which seals the interfaces of nickel particles and thereby it improves the resistance to sedimentation. Triton X 100 was added as the surfactant for the fluid to reduce the agglomeration of the particles. Findings: Morphology of pure nickel and graphene were examined using scanning electron microscopy (SEM) images. Research limitations/implications: The important limitations is that freely dispersed micron sized iron particles could settle over a period of time, in the form of cakes at the bottommost, and it is tedious to recuperate as dispersed phase. In this investigation, nano sized nickel particles were used as additive to reduce the sedimentation of micron sized iron particles so that, the mixture is homogeneous for extended period of time. In future, addition of different types composite additives in the magnetorheological fluid could be made for the better sedimentation control. Practical implications: The sedimentation problem is one of the major drawback in the smart fluids, which can be eliminated by adding nano particles. For conventional fluid, the complete sedimentation will occur in 2 hours while the improved nano magnetic fluid with additive has good resistance to settle the micron sized iron particle up to 10 hours. Originality/value: To prepare a low cost magnetorheological fluid with nano additives like nickel particles along with fillers as graphene nano particles. With this addition of nickel and inclusion of graphene, the sedimentation problem in magnetorheological fluids is significantly reduced. This magnetorheological fluids can be used in brakes and dampers of automobiles.
Źródło:
Archives of Materials Science and Engineering; 2019, 96, 2; 49-55
1897-2764
Pojawia się w:
Archives of Materials Science and Engineering
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Effectiveness of hybrid Al2O3-TiO2 nano cutting fluids application in CNC turning process
Autorzy:
Arifuddin, A.
Redhwan, A.A.M.
Syafiq, A.M.
Zainal Ariffin, S.
Aminullah, A.R.M.
Azmi, W.H.
Powiązania:
https://bibliotekanauki.pl/articles/24200595.pdf
Data publikacji:
2022
Wydawca:
Stowarzyszenie Komputerowej Nauki o Materiałach i Inżynierii Powierzchni w Gliwicach
Tematy:
Al2O3-TiO2
nano cutting fluid
CNC turning
response surface method
RSM
nano płyn do cięcia
toczenie CNC
metoda powierzchni odpowiedzi
Opis:
Purpose: The purpose of this study is to evaluate the effectiveness of hybrid Al2O3-TiO2 nano-cutting fluid in the turning process application under the selected significant machining parameters consisting of nano concentration, depth of cut and feed rate. Design/methodology/approach: The preparation of aqueous hybrid Al2O3-TiO2 water-based nano-cutting fluids and their application as the cutting fluid in turning operations are undertaken. The Al2O3-TiO2 hybrid nano-cutting fluids were prepared through a one-step method; by dispersing nanoparticles of Al2O3 (average diameter 30 nm) and TiO2 (average diameter 30-50 nm) in CNC coolant based at four different volume concentrations (1%, 2%, 3%, 4%). The effectiveness of turning cutting performance, namely cutting temperature (°C), average surface roughness (Ra), and tool wear (%), were assessed via air-assisted nano cutting fluids impinged through MQL setup in turning of Aluminium Alloy AA7075. The response surface method (RSM) was employed in the design of the experiment (DOE). Findings: The lowest cutting temperature, surface roughness, and tool wear of 25.8°C, 0.494 μm, and 0.0107%, are obtained, respectively, when the combinations of hybrid nano cutting fluid concentration of 4%, feed rate value of 0.1 mm/rev, and 0.3 mm depth of cut is used. Research limitations/implications: The result in this paper is based on the experimental study of Al2O3-TiO2 hybrid nano-cutting fluid using CNC turning operation. The process focuses on the finishing process by using a finishing insert. Further work using roughing process may be suggested to observe the better performance of this cutting process using nano-cutting fluid towards reducing the wear rate. Practical implications: The use of Al2O3-TiO2 hybrid nano-cutting fluid coupled with MQL in the CNC turning process is considered a new method. Machining soft and delicate materials such as Aluminium should consider using this combination technique since it lowers the cutting temperature and removes the chips, reducing the adhesive wear. Originality/value: The hybrid nano-cutting fluid can replace the conventional cutting fluid and will perform better if combined with the MQL cooling technique; this new method should be considered by major industry players that require a high-precision finished product such as the product that involves aircraft and aerospace applications.
Źródło:
Archives of Materials Science and Engineering; 2022, 117, 2; 70--78
1897-2764
Pojawia się w:
Archives of Materials Science and Engineering
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
CFD analysis of nano-lubricated journal bearing considering variable viscosity and elastic deformation effects
Autorzy:
Kadhim, Zainab H.
Ahmed, Saba Y.
Abass, Basim A.
Powiązania:
https://bibliotekanauki.pl/articles/2096173.pdf
Data publikacji:
2022
Wydawca:
Polska Akademia Nauk. Polskie Towarzystwo Diagnostyki Technicznej PAN
Tematy:
hydrodynamic journal bearings
computational fluid dynamics
thermohydrodynamic lubrication
nano-lubricant
elastic deformation
hydrodynamika
łożyska ślizgowe
numeryczna mechanika płynów
smarowanie hydrodynamiczne
odkształcenie sprężyste
Opis:
The main objective of the present work is to study the behavior of Nano-lubricated journal bearing considering elasticity and variable viscosity effects. A mathematical model for a journal bearing is employed using three-dimensional computational fluid dynamics. The study is implemented for a journal bearing with laminar flow and smooth surfaces lubricated with pure oil as well as lubricants containing different concentrations of Al2O3 Nano-particles. The dependence of the oil viscosity on the temperature is considered by using the modified Krieger Dougherty model. Pressure, temperature and elastic deformation in addition to the bearing load-carrying capacity of the bearing working under different eccentricity ratios (0.1-0.6) have been studied. The mathematical model is confirmed by comparing the results of the pressure and temperature distributions obtained in the current work with those obtained by Ferron et al.(1983) for a bearing lubricated with pure oil. Also, the pressure obtained for the Nano-lubricated bearing of the present work is validated with that obtained by Solighar (2015). The results are found in good agreement with a maximum deviation not exceeding 5%. The obtained results show that the oil film pressure increases by about 17.9% with a slight decrease in oil film temperature and friction coefficient.
Źródło:
Diagnostyka; 2022, 23, 1; 1--8
1641-6414
2449-5220
Pojawia się w:
Diagnostyka
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-6 z 6

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies