Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "multipartite graphs" wg kryterium: Temat


Wyświetlanie 1-3 z 3
Tytuł:
γ-labelings of complete bipartite graphs
Autorzy:
Bullington, Grady
Eroh, Linda
Winters, Steven
Powiązania:
https://bibliotekanauki.pl/articles/744504.pdf
Data publikacji:
2010
Wydawca:
Uniwersytet Zielonogórski. Wydział Matematyki, Informatyki i Ekonometrii
Tematy:
γ-labelings
bipartite graphs
multipartite graphs
Opis:
Explicit formulae for the γ-min and γ-max labeling values of complete bipartite graphs are given, along with γ-labelings which achieve these extremes. A recursive formula for the γ-min labeling value of any complete multipartite is also presented.
Źródło:
Discussiones Mathematicae Graph Theory; 2010, 30, 1; 45-54
2083-5892
Pojawia się w:
Discussiones Mathematicae Graph Theory
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
On choosability of complete multipartite graphs $K_{4,3*t,2*(k-2t-2),1*(t+1)}$
Autorzy:
Zheng, Guo-Ping
Shen, Yu-Fa
Chen, Zuo-Li
Lv, Jin-Feng
Powiązania:
https://bibliotekanauki.pl/articles/744583.pdf
Data publikacji:
2010
Wydawca:
Uniwersytet Zielonogórski. Wydział Matematyki, Informatyki i Ekonometrii
Tematy:
list coloring
complete multipartite graphs
chromatic-choosable graphs
Ohba's conjecture
Opis:
A graph G is said to be chromatic-choosable if ch(G) = χ(G). Ohba has conjectured that every graph G with 2χ(G)+1 or fewer vertices is chromatic-choosable. It is clear that Ohba's conjecture is true if and only if it is true for complete multipartite graphs. In this paper we show that Ohba's conjecture is true for complete multipartite graphs $K_{4,3*t,2*(k-2t-2),1*(t+1)}$ for all integers t ≥ 1 and k ≥ 2t+2, that is, $ch(K_{4,3*t,2*(k-2t-2),1*(t+1)}) = k$, which extends the results $ch(K_{4,3,2*(k-4),1*2}) = k$ given by Shen et al. (Discrete Math. 308 (2008) 136-143), and $ch(K_{4,3*2,2*(k-6),1*3}) = k$ given by He et al. (Discrete Math. 308 (2008) 5871-5877).
Źródło:
Discussiones Mathematicae Graph Theory; 2010, 30, 2; 237-244
2083-5892
Pojawia się w:
Discussiones Mathematicae Graph Theory
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
On Incidence Coloring of Complete Multipartite and Semicubic Bipartite Graphs
Autorzy:
Janczewski, Robert
Małafiejski, Michał
Małafiejska, Anna
Powiązania:
https://bibliotekanauki.pl/articles/31342434.pdf
Data publikacji:
2018-02-01
Wydawca:
Uniwersytet Zielonogórski. Wydział Matematyki, Informatyki i Ekonometrii
Tematy:
incidence coloring
complete multipartite graphs
semicubic graphs
subcubic graphs
-completeness
L (1,1)-labelling
Opis:
In the paper, we show that the incidence chromatic number $ \chi_i $ of a complete $k$-partite graph is at most $ \Delta + 2 $ (i.e., proving the incidence coloring conjecture for these graphs) and it is equal to $ \Delta + 1 $ if and only if the smallest part has only one vertex (i.e., $ \Delta = n − 1 $). Formally, for a complete k-partite graph $ G = K_{r_1,r_2,...,r_k} $ with the size of the smallest part equal to $ r_1 \ge 1 $ we have $$ \chi_i (G)= \begin{cases} \Delta(G)+1 & \text { if } r_1=1, \\ \Delta(G)+2 & \text { if } r_1>1. \end{cases} $$ In the paper we prove that the incidence 4-coloring problem for semicubic bipartite graphs is \( \mathcal{NP} \)-complete, thus we prove also the \( \mathcal{NP} \)-completeness of L(1, 1)-labeling problem for semicubic bipartite graphs. Moreover, we observe that the incidence 4-coloring problem is \( \mathcal{NP} \)-complete for cubic graphs, which was proved in the paper [12] (in terms of generalized dominating sets).
Źródło:
Discussiones Mathematicae Graph Theory; 2018, 38, 1; 107-119
2083-5892
Pojawia się w:
Discussiones Mathematicae Graph Theory
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-3 z 3

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies