- Tytuł:
-
Improvements to Glowworm Swarm Optimization algorithm
Ulepszenia algorytmu Glowworm Swarm Optimization - Autorzy:
- Oramus, P.
- Powiązania:
- https://bibliotekanauki.pl/articles/305567.pdf
- Data publikacji:
- 2010
- Wydawca:
- Akademia Górniczo-Hutnicza im. Stanisława Staszica w Krakowie. Wydawnictwo AGH
- Tematy:
-
inteligencja roju
optymalizacja
swarm intelligence
glowworm swarm optimization
multimodal function optimization - Opis:
-
Glowworm Swarm Optimization algorithm is applied for the simultaneous capture of multiple optima of multimodal functions. The algorithm uses an ensemble of agents, which scan the search space and exchange information concerning a fitness of their current position. The fitness is represented by a level of a luminescent quantity called luciferin. An agent moves in direction of randomly chosen neighbour, which broadcasts higher value of the luciferin. Unfortunately, in the absence of neighbours, the agent does not move at all. This is an unwelcome feature, because it diminishes the performance of the algorithm. Additionally, in the case of parallel processing, this feature can lead to unbalanced loads. This paper presents simple modifications of the original algorithm, which improve performance of the algorithm by limiting situations, in which the agent cannot move. The paper provides results of comparison of an original and modified algorithms calculated for several multimodal test functions.
Algorytm Glowworm Swarm Optimization jest stosowany do równoczesnego odnajdywania wielu optimów funkcji multimodalnych. Algorytm używa zespołu agentów przeszukujących przestrzeń poszukiwań i wymieniających się informacjami o wartości funkcji przystosowania w danym położeniu. Funkcja przystosowania jest reprezentowana przez poziom emitującego światło pigmentu - lucyferyny. Agenci poruszają się w kierunku losowo wybranego sąsiada, który rozgłasza wyższą wartość poziomu lucyferyny. Niestety w przypadku braku sąsiadów agent nie porusza się wcale. Stanowi to niepożądaną cechę algorytmu ograniczającą jego wydajność. W przypadku przetwarzania równoległego cecha ta może prowadzić do niezrównoważenia obciążenia. Praca ta przedstawia proste modyfikacje oryginalnego algorytmu zwiększające jego wydajność poprzez ograniczanie liczby takich sytuacji, w których agent nie może się poruszyć. Przedstawione zostały wyniki porównania pracy oryginalnego i zmodyfikowanych algorytmów dla kilku funkcji testowych. - Źródło:
-
Computer Science; 2010, 11; 7-20
1508-2806
2300-7036 - Pojawia się w:
- Computer Science
- Dostawca treści:
- Biblioteka Nauki