Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "multilabel classification" wg kryterium: Temat


Wyświetlanie 1-3 z 3
Tytuł:
Effective multi-label classification method with applications to text document categorization
Autorzy:
Glinka, K.
Zakrzewska, D.
Powiązania:
https://bibliotekanauki.pl/articles/94735.pdf
Data publikacji:
2016
Wydawca:
Szkoła Główna Gospodarstwa Wiejskiego w Warszawie. Wydawnictwo Szkoły Głównej Gospodarstwa Wiejskiego w Warszawie
Tematy:
multilabel classification
text categorization
problem transformation method
text management
Opis:
Increasing number of repositories of online documents resulted in growing demand for automatic categorization algorithms. However, in many cases the texts should be assigned to more than one class. In the paper, new multi-label classification algorithm for short documents is considered. The presented problem transformation Labels Chain (LC) algorithm is based on relationship between labels, and consecutively uses result labels as new attributes in the following classification process. The method is validated by experiments conducted on several real text datasets of restaurant reviews, with different number of instances, taking into account such classifiers as kNN, Naive Bayes, SVM and C4.5. The obtained results showed the good performance of the LC method, comparing to the problem transformation methods like Binary Relevance and Label Powerset.
Źródło:
Information Systems in Management; 2016, 5, 1; 24-35
2084-5537
2544-1728
Pojawia się w:
Information Systems in Management
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Joint feature selection and classification for positive unlabelled multi-label data using weighted penalized empirical risk minimization
Autorzy:
Teisseyre, Paweł
Powiązania:
https://bibliotekanauki.pl/articles/2142491.pdf
Data publikacji:
2022
Wydawca:
Uniwersytet Zielonogórski. Oficyna Wydawnicza
Tematy:
positive data
unlabelled data
multilabel classification
feature selection
empirical risk minimization
dane pozytywne
dane nieoznaczone
klasyfikacja wieloetykietowa
selekcja cech
Opis:
We consider the positive-unlabelled multi-label scenario in which multiple target variables are not observed directly. Instead, we observe surrogate variables indicating whether or not the target variables are labelled. The presence of a label means that the corresponding variable is positive. The absence of the label means that the variable can be either positive or negative. We analyze embedded feature selection methods based on two weighted penalized empirical risk minimization frameworks. In the first approach, we introduce weights of observations. The idea is to assign larger weights to observations for which there is a consistency between the values of the true target variable and the corresponding surrogate variable. In the second approach, we consider a weighted empirical risk function which corresponds to the risk function for the true unobserved target variables. The weights in both the methods depend on the unknown propensity score functions, whose estimation is a challenging problem. We propose to use very simple bounds for the propensity score, which leads to relatively simple forms of weights. In the experiments we analyze the predictive power of the methods considered for different labelling schemes.
Źródło:
International Journal of Applied Mathematics and Computer Science; 2022, 32, 2; 311--322
1641-876X
2083-8492
Pojawia się w:
International Journal of Applied Mathematics and Computer Science
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Multi-label classification using error correcting output codes
Autorzy:
Kajdanowicz, T.
Kazienko, P.
Powiązania:
https://bibliotekanauki.pl/articles/331286.pdf
Data publikacji:
2012
Wydawca:
Uniwersytet Zielonogórski. Oficyna Wydawnicza
Tematy:
maszyna ucząca się
uczenie nadzorowane
metoda agregacji
struktura ramowa
machine learning
supervised learning
multilabel classification
error correcting output codes
ECOC
ensemble methods
binary relevance
framework
Opis:
A framework for multi-label classification extended by Error Correcting Output Codes (ECOCs) is introduced and empirically examined in the article. The solution assumes the base multi-label classifiers to be a noisy channel and applies ECOCs in order to recover the classification errors made by individual classifiers. The framework was examined through exhaustive studies over combinations of three distinct classification algorithms and four ECOC methods employed in the multi-label classification problem. The experimental results revealed that (i) the Bode-Chaudhuri-Hocquenghem (BCH) code matched with any multi-label classifier results in better classification quality; (ii) the accuracy of the binary relevance classification method strongly depends on the coding scheme; (iii) the label power-set and the RAkEL classifier consume the same time for computation irrespective of the coding utilized; (iv) in general, they are not suitable for ECOCs because they are not capable to benefit from ECOC correcting abilities; (v) the all-pairs code combined with binary relevance is not suitable for datasets with larger label sets.
Źródło:
International Journal of Applied Mathematics and Computer Science; 2012, 22, 4; 829-840
1641-876X
2083-8492
Pojawia się w:
International Journal of Applied Mathematics and Computer Science
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-3 z 3

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies