Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "multidimensional visualization" wg kryterium: Temat


Wyświetlanie 1-8 z 8
Tytuł:
Application of multi-parameter data visualization by means of multidimensional scaling to evaluate possibility of coal gasification
Wykorzystanie wizualizacji wielowymiarowych danych przy użyciu skalowania wielowymiarowego do oceny możliwości zgazowania węgla
Autorzy:
Jamróz, D.
Niedoba, T.
Surowiak, A.
Tumidajski, T.
Szostek, R.
Gajer, M.
Powiązania:
https://bibliotekanauki.pl/articles/219920.pdf
Data publikacji:
2017
Wydawca:
Polska Akademia Nauk. Czytelnia Czasopism PAN
Tematy:
zgazowanie węgla
wizualizacja wielowymiarowa
skalowanie wielowymiarowe
MDS
wielowymiarowe dane
wzbogacanie w osadzarkach
coal gasification
multidimensional visualization
multidimensional scaling
multidimensional data
Opis:
The application of methods drawing upon multi-parameter visualization of data by transformation of multidimensional space into two-dimensional one allow to show multi-parameter data on computer screen. Thanks to that, it is possible to conduct a qualitative analysis of this data in the most natural way for human being, i.e. by the sense of sight. An example of such method of multi-parameter visualization is multidimensional scaling. This method was used in this paper to present and analyze a set of seven-dimensional data obtained from Janina Mining Plant and Wieczorek Coal Mine. It was decided to examine whether the method of multi-parameter data visualization allows to divide the samples space into areas of various applicability to fluidal gasification process. The “Technological applicability card for coals” was used for this purpose [Sobolewski et al., 2012; 2013], in which the key parameters, important and additional ones affecting the gasification process were described.
Metody służące do wizualizacji złożonych, wielowymiarowych danych poprzez transformację przestrzeni wielowymiarowej do dwuwymiarowej umożliwiają prezentację tych danych na ekranie komputera. Tym samym są przystępnym instrumentem analizy zbiorów danych, pozwalającym wykorzystać połączenie naszego wzroku z mocą naszej osobistej sieci neuronowej (mózgu) do wyodrębnienia z danych cech, których zauważenie przy pomocy innych metod może być bardzo trudne. W artykule zastosowano jedną z takich metod – skalowanie wielowymiarowe – w celu sprawdzenia, skuteczności tej metody do analizy próbek węgla ze względu na jego przydatność do procesu zgazowania w kotle fluidalnym. W tym celu pobrano próbki dwóch węgli, z KWK „Wieczorek” (węgiel typu 32) oraz ZG „Janina” (węgiel typu 31.2), które następnie miały być poddane testom pod względem ich przydatności do zgazowania. Każda z próbek została zbadana ze względu na cechy, których określone poziomy są kluczowe oraz wskazane w kontekście procesu zgazowania według „Karty przydatności węgli do zgazowania” (Sobolewski et al., 2012; 2013). Każdy z węgli został rozdzielony na osadzarce pierścieniowej (10 pierścieni, uziarnienie węgla 0-18 mm) w wyniku czego powstało pięć warstw (po 2 pierścienie każda). Następnie każda z warstw została rozsiana na 10 klas ziarnowych. Tak otrzymane produkty zostały poddane technicznej oraz chemicznej analizie (ogółem 50 próbek z ZG „Janina” oraz 49 próbek z KWK „Wieczorek” – klasa ziarnowa 16-18 mm w tej drugiej kopalni nie została uzyskana i pomiar był niemożliwy do zrealizowania. Tym samym otrzymano takie parametry do analizy jak: zawartość siarki, zawartość wodoru, zawartość azotu, zawartość chloru, zawartość węgla organicznego, ciepło spalania oraz zawartość popiołu. W wyniku przeprowadzonych badań oraz porównania ich z wymogami prezentowanymi w „Karcie przydatności węgli do zgazowania” okazało się, że tylko 18 próbek spełnia wszystkie wymogi, z czego aż 17 pochodziło z KWK „Wieczorek”. Postanowiono poddać ocenie wszystkie próbki bardziej złożonej obserwacji – wielowymiarowej analizie danych za pomocą skalowania wielowymiarowego. W rozdziale 3 przedstawiono szczegółowo zastosowaną metodologię analizy wraz z opisem algorytmu. Następnie, w rozdziale 4 przedstawiono wyniki obserwacji przeprowadzonych za pomocą opracowanego w tym celu programu komputerowego, napisanego w języku C++. Rysunki 1-3 przedstawiają sytuację, gdzie dane reprezentujące próbki węgla mniej lub bardziej przydatne do zgazowania zaczynają tworzyć podgrupy. Proces grupowania został przedstawiony etapowo, tzn. rys. 1 prezentuje sytuację wyjściową, Rys. 2 sytuację przy bardzo małej wartości parametru ITER = 5, zaś Rys. 3 najlepszy możliwy widok, otrzymany przy wartości parametru ITER = 340. Widać na tym rysunku, że obrazy punktów reprezentujących próbki węgla bardziej oraz mniej podatnego na zgazowanie zajmują osobne podobszary. Widać, że na całym obszarze rysunku, podobszary te można łatwo od siebie odseparować. Przez to możemy na podstawie tego rysunku stwierdzić, że skalowanie wielowymiarowe pozwala podzielić przestrzeń próbek na obszary o różnej przydatności do procesu zgazowania fluidalnego. Dzięki temu analizując następne, nieznane próbki możemy poprzez ich wizualizację zakwalifikować je do grupy bardziej podatnych na zgazowanie lub mniej podatnych na zgazowanie. Ważne jest to szczególnie dlatego, ponieważ w analizowanej sytuacji próbki węgla bardziej podatnego na zgazowanie zajmują wnętrze siedmiowymiarowego prostopadłościanu – co jest znacznym uproszczeniem. Wynika to bezpośrednio z faktu, iż przyjęte warunki określające przynależność do tej grupy („Karta przydatności Technologicznej węgla”) to proste nierówności przy pomocy których łatwo można sprawdzić taką przynależność. W rzeczywistości, może się jednak okazać, że obszar przynależności może mieć znacznie bardziej skomplikowany kształt. Wtedy na podstawie większej ilości próbek, których przynależność do klasy węgla bardziej podatnego na zgazowanie zostanie stwierdzona empirycznie, można będzie próbować przy pomocy skalowania wielowymiarowego uzyskać podział przestrzeni na obszary reprezentujące próbki węgla bardziej oraz mniej podatnego na zgazowanie. Rys. 4 przedstawia podobny podział, ale bez wzięcia pod uwagę parametru „zawartość chloru”. Również i w tym przypadku próbki węgla mniej lub bardziej podatnego na zgazowanie tworzą wyraźne podgrupy. Przy pominięciu parametru „zawartość chloru” już 78 próbek (37 z ZG „Janina” oraz 41 z KWK „Wieczorek”) z analizowanych 99-ciu spełniałoby wymogi zawarte w „Karcie przydatności węgla do zgazowania”. Rys. 5 przedstawia inne podejście do analizowanych próbek węgla. Tym razem za kryterium podziału przyjęto pochodzenie węgla z KWK „Wieczorek” lub ZG „Janina”, bez rozpatrywania ich w kontekście przydatności do zgazowania. Również i tym razem okazało się, że zastosowana metodologia pozwala stwierdzić możliwość efektywnego rozdzielenia, a tym samym prawidłowego rozpoznania analizowanych próbek węgla. Tym samym dowiedziono, że metoda skalowania wielowymiarowego może być bardzo przydatnym narzędziem podczas wieloparametrycznej analizy próbek różnego typu węgli.
Źródło:
Archives of Mining Sciences; 2017, 62, 3; 445-457
0860-7001
Pojawia się w:
Archives of Mining Sciences
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Application of multidimensional data visualization by means of self-organizing Kohonen maps to evaluate classification possibilities of various coal types
Zastosowanie wizualizacji wielowymiarowych danych za pomocą sieci Kohonena do oceny możliwości klasyfikacji różnych typów węgla
Autorzy:
Jamróz, D.
Niedoba, T.
Powiązania:
https://bibliotekanauki.pl/articles/220033.pdf
Data publikacji:
2015
Wydawca:
Polska Akademia Nauk. Czytelnia Czasopism PAN
Tematy:
Kohonen maps
grained material analysis
coal
multidimensional data
multidimensional visualization methods
sieci Kohonena
analiza materiału uziarnionego
dane wielowymiarowe
metody wizualizacji wielowymiarowej
Opis:
Multidimensional data visualization methods are a modern tool allowing to classify some analysed objects. In the case of grained materials e.g. coal, many characteristics have an influence on the material quality. The paper presents the possibility of applying visualization techniques for coal type identification and determination of significant differences between various types of coal. To achieve this purpose, the method of Kohonen maps was applied by means of which three types of coal – 31, 34.2 and 35 (according to Polish classification of coal types) were investigated. It was stated that the applied methodology allows to identify certain coal types efficiently and can be used as a qualitative criterion for grained materials.
Metody wizualizacji wielowymiarowych danych są nowoczesnym narzędziem umożliwiającym klasyfikację analizowanych obiektów, którymi mogą być różnego typu dane opisujące wybrane zjawisko lub materiał. W przypadku materiałów uziarnionych, jakim jest np. węgiel, wiele cech ma wpływ na jakość materiału, tj. np. gęstość, wielkość ziaren, ciepło spalania, zawartość popiołu, zawartość siarki itp. Na potrzeby artykułu przeprowadzono rozdział węgli z trzech wybranych kopalni węgla kamiennego, zlokalizowanych w Górnośląskim Okręgu Przemysłowym. Każda z tych kopalni pracuje na innego typu węglu. W tym przypadku były to węgle o typach 31, 34.2 oraz 35 (według polskiej klasyfikacji typów węgla). Najpierw, materiał został podzielony na klasy ziarnowe a następnie za pomocą rozdziale w cieczy ciężkiej (roztwór chlorku cynku) na frakcje gęstościowe. Dla tak przygotowanego materiału przeprowadzono następnie analizy chemiczne mające na celu określenie takich parametrów, jak zawartość siarki, zawartość popiołu, zawartość części lotnych, ciepło spalania oraz wilgotność analityczną. W ten sposób, dla każdej klaso-frakcji uzyskano bogate charakterystyki badanego materiału. Nasuwa się więc pytanie, czy możliwa jest identyfikacja typu węgla za pomocą dostępnych danych. W tym celu zastosowano wielowymiarową technikę wizualizacji statystycznej. Istnieje wiele metod takiej wizualizacji, z których kilka było już przedmiotem wcześniejszych publikacji autorów. W tym wypadku autorzy zdecydowali się zastosować metodę sieci Kohonena. Metoda ta została opisana w rozdziale 2 pracy, gdzie oprócz opisu teoretycznego podano również główne wzory stosowane podczas modelowania tą metodą (wzory (1)-(5)). Do zbadania postawionego problemu wykorzystano optymalną liczbę iteracji i optymalny czas uczenia sieci. Pewnym problemem pojawiającym się przy takiej wizualizacji jest konieczność doboru parametrów, w celu uzyskania widoku, który w sposób czytelny prezentuje poszukiwane przez nas informacje. Należy wspomnieć, że w trakcie prowadzonych eksperymentów uzyskiwano widoki przy użyciu sieci neuronowej o wielkości od 10 × 10 do 100 × 100 neuronów. Widoki były uzyskiwane przy wartości parametru MAX_DISTANCE od 1 do wielkości sieci oraz parametru ITER od 1 do 5000. Eksperymenty były prowadzone dla różnych wzorów określających modyfikację wag. Przedstawione w pracy wyniki stanowią najbardziej czytelne z uzyskanych. Wizualizacja wielowymiarowa przy użyciu sieci Kohonena pozwala stwierdzić, że informacje zawarte w analizowanych siedmiowymiarowych danych są wystarczające do prawidłowej klasyfikacji typów węgla 31, 34.2 oraz 35, przy czym nawet zobrazowanie 3 typów węgla na jednym rysunku pozwala stwierdzić, że neurony reprezentujące próbki węgla danego typu gromadzą się w skupiskach, które można od siebie odseparować. Z tego wynika, że dane zawierają informacje wystarczające do prawidłowej klasyfikacji węgla. Zauważyć jednak warto, że przedstawienie przy pomocy sieci Kohonena, danych reprezentujących różne typy węgla parami, pozwala uzyskać jeszcze bardziej czytelne wyniki. Najlepsze efekty osiągnięto dla sieci o 40 wierszach oraz 40 kolumnach neuronów, co łącznie dało liczbę 1600 neuronów, zaś czytelność wyników rośnie wraz z postępem uczenia sieci neuronowej (wzrostem parametru ITER). Przeprowadzone doświadczenia w pełni potwierdzają, że zastosowana metoda może być z powodzeniem wykorzystana w badaniach jakościowych związanych z różnego typu materiałami uziarnionymi, w tym również węglem. Badania w tym zakresie są kontynuowane.
Źródło:
Archives of Mining Sciences; 2015, 60, 1; 39-50
0860-7001
Pojawia się w:
Archives of Mining Sciences
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Application of relevance maps in multidimensional classification of coal types
Zastosowanie map odniesienia w wielowymiarowej klasyfikacji typów węgla
Autorzy:
Niedoba, T.
Powiązania:
https://bibliotekanauki.pl/articles/220101.pdf
Data publikacji:
2015
Wydawca:
Polska Akademia Nauk. Czytelnia Czasopism PAN
Tematy:
relevance maps
multidimensional data visualization
coal
identification of data
pattern recognition
mapy odniesienia
wizualizacja wielowymiarowych danych
identyfikacja danych
rozpoznawanie kształtów
Opis:
Multidimensional data visualization methods are a modern tool allowing to classify some analyzed objects. In the case of grained materials e.g. coal, many characteristics have an influence on the material quality. In case of coal, apart from most obvious features like particle size, particle density or ash contents there are many others which cause significant differences between considered types of material. The paper presents the possibility of applying visualization techniques for coal type identification and determination of significant differences between various types of coal. Author decided to apply relevance maps to achieve this purpose. Three types of coal – 31, 34.2 and 35 (according to Polish classification of coal types) were investigated, which were initially screened on sieves and then divided into density fractions. Then, each size-density fraction was chemically analyzed to obtain other characteristics. It was stated that the applied methodology allows to identify certain coal types efficiently and can be used as a qualitative criterion for grained materials. However, it was impossible to achieve such identification comparing all three types of coal together. The presented methodology is new way of analyzing data concerning Widery understood mineral processing.
Surowce mineralne, które podlegają wzbogacaniu w celu ich lepszego wykorzystania mogą być (charakteryzują się) charakteryzowane wieloma wskaźnikami opisującymi ich, interesujące przeróbkarza, cechy. Podstawowymi cechami są wielkość ziaren oraz ich gęstość, które decydują o przebiegu rozdziału zbiorów ziaren (nadaw) i efektach takiego rozdziału. Rozdział prowadzi się z reguły, w celu uzyskania produktów o zróżnicowanych wartościach średnich wybranej cechy, która zwykle charakteryzowana jest zawartością określonego składnika surowca wyznaczoną na drodze analiz chemicznych. Takie podejście do surowca mineralnego prowadzi do potraktowania go jako wielowymiarowego wektora X = [X1,..., Xn]. Zasadniczym problemem jest także wybór jednostki populacji generalnej (ziarno, jednostka objętości lub masy), co może decydować o kierunkach charakteryzowania wielowymiarowych powiązań cech wektora X. Takimi kierunkami charakteryzowania mogą być: – wielowymiarowe rozkłady wektora losowego X wraz ze wszystkimi konsekwencjami metody (Lyman, 1993; Niedoba, 2009; 2011; Olejnik et al., 2010; Niedoba i Surowiak, 2012); – wielowymiarowe równania regresji wraz z analizą macierzy współczynników korelacji liniowej oraz korelacji cząstkowej (Niedoba, 2013b); – analiza czynnikowa (Tumidajski, 1997; Tumidajski and Saramak, 2009); – metody wielowymiarowej wizualizacji danych. W artykule zastosowano nowoczesną metodę wizualizacji wielowymiarowych danych – metodę tzw. map odniesienia (z ang. relevance maps). Aby zastosować ww. metodę przeprowadzono doświadczenia na trzech typach węgla, pobranych z trzech kopalni węgla kamiennego, zlokalizowanych w Górnośląskim Okręgu Przemysłowym. Były to węgle typu 31, 34.2 i 35, według polskiej klasyfikacji węgli. Każdą z pobranych prób poddano rozdziałowi na klasy ziarnowe a następnie każdą z klas ziarnowych rozdzielono na frakcje densymetryczne za pomocą rozdziału w roztworze chlorku cynku. Tak otrzymane klaso-frakcje przebadano chemiczne ze względu na wybrane parametry jakościowe węgla. Były to takie cechy jak: ciepło spalania, zawartość popiołu, zawartość siarki, zawartość substancji lotnych oraz miąższość materiału. Otrzymano w ten sposób zestaw siedmiu danych dla każdej klasy ziarnowej i każdego typu węgla. Stanowił on swoisty siedmiowymiarowy zbiór, który postanowiono zobrazować za pomocą techniki wizualizacji bazującej na tzw. mapach odniesienia. W metodzie map odniesienia na płaszczyźnie służącej do wizualizacji danych zostają rozmieszczone specjalne punkty zwane punktami odniesienia, reprezentujące poszczególne cechy. Do każdej cechy (współrzędnej) zostaje przyporządkowany punkt odniesienia reprezentujący tą cechę. Czyli przy danych 7-wymiarowych umieszczamy na płaszczyźnie 7 takich punktów odniesienia reprezentujących poszczególne współrzędne. Rozkład punktów reprezentujących przedstawiane wielowymiarowe dane odzwierciedla relacje pomiędzy tymi danymi a cechami. Im bardziej i-ta cecha występuje w danym obiekcie (czyli i-ta współrzędna ma większą wartość), tym bliżej powinien leżeć punkt reprezentujący dany obiekt względem punktu odniesienia reprezentującego i-tą cechę (współrzędną). W ten sposób każdy punkt odniesienia reprezentujący daną cechę, dzieli płaszczyznę na obszary bardziej oraz mniej zależne od cechy nr i (mniej oraz bardziej odległe od punktu odniesienia reprezentującego i-tą cechę). Dokładny opis algorytmu przedstawiono w podrozdziale 3 artykułu. Za pomocą omawianej metody dokonano wizualizacji danych dotyczących przedstawionych typów węgla. Uzyskane rezultaty przedstawiono na rysunkach 1-9. Widoki te pokazują sposób, w jaki 7-wymiarowe dane zostają przekształcone przy pomocy mapy odniesienia do dwóch wymiarów. Algorytm wizualizacji przy użyciu mapy odniesienia działa tak by pomimo znacznej redukcji liczby wymiarów, w jak największym stopniu odległości pomiędzy punktem reprezentującym konkretny wektor danych a punktami odniesienia zależały od współrzędnych tego wektora danych. W ten sposób na ekranie 2-wymiarowym, możemy zobaczyć istotne cechy danych 7-wymiarowych. Na rysunkach 1-4 widać, w jaki sposób wzrasta grupowanie punktów reprezentujących trzy różne klasy węgla (31, 34.2 oraz 35) wraz ze wzrostem parametru ITER. Widać, że punkty będące obrazami danych reprezentujących te same klasy węgla zaczynają zajmować osobne podobszary oraz zaczynają się grupować. Jednak w niektórych częściach przestrzeni obrazy punktów reprezentujących różne klasy węgla zachodzą na siebie. Przez to nie możemy na podstawie tych rysunków stwierdzić, że analizowane dane pozwalają na prawidłową klasyfikację typów węgla. W celu uzyskania bardziej czytelnych wyników postanowiono przedstawić przy pomocy mapy odniesienia, te same dane w nieco inny sposób. Postanowiono przeanalizować dane reprezentujące różne typy węgla parami. Rysunek 5 przedstawia widok uzyskany dla danych reprezentujących typy węgla 34.2 oraz 35. Widać na nim czytelnie, że obrazy punktów reprezentujących próbki węgla typu 34.2 gromadzą się w skupiskach, które łatwo można odseparować od skupisk obrazów punktów reprezentujących próbki węgla 35. Podobne obserwacje dokonano na podstawie rysunków 6 i 7, gdzie przedstawiono parami, odpowiednio, węgle typu 31 i 34.2 oraz 31 i 35. Przeprowadzona wizualizacja wielowymiarowa przy użyciu map odniesienia pozwala więc stwierdzić, że informacje zawarte w analizowanych siedmiowymiarowych danych są wystarczające do prawidłowej klasyfikacji typów węgla 31, 34.2 oraz 35.
Źródło:
Archives of Mining Sciences; 2015, 60, 1; 93-106
0860-7001
Pojawia się w:
Archives of Mining Sciences
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Comparison of selected methods of multi-parameter data visualization used for classification of coals
Autorzy:
Jamroz, D.
Niedoba, T.
Powiązania:
https://bibliotekanauki.pl/articles/110329.pdf
Data publikacji:
2015
Wydawca:
Politechnika Wrocławska. Oficyna Wydawnicza Politechniki Wrocławskiej
Tematy:
multidimensional visualization
observational tunnels method
multidimensional scaling
MDS
principal component analysis
PCA
relevance maps
autoassociative neural networks
Kohonen maps
parallel coordinates method
grained material
coal
Opis:
Methods of multi-parameter data visualization through the transformation of multidimensional space into two-dimensional one allow to present multidimensional data on computer screen, thus making it possible to conduct a qualitative analysis of this data in the most natural way for human – by a sense of sight. In the paper a comparison was made to show the efficiency of selected seven methods of multidimensional visualization and further, to analyze data describing various coal type samples. Each of the methods was verified by checking how precisely a coal type can be classified when a given method is applied. For this purpose, a special criterion was designed to allow an evaluation of the results obtained by means of each of these methods. Detailed information included presentation of methods, elaborated algorithms, accepted parameters for best results as well the results. The framework for the comparison of the analyzed multi-parameter visualization methods includes: observational tunnels method multidimensional scaling MDS, principal component analysis PCA, relevance maps, autoassociative neural networks, Kohonen maps and parallel coordinates method.
Źródło:
Physicochemical Problems of Mineral Processing; 2015, 51, 2; 769-784
1643-1049
2084-4735
Pojawia się w:
Physicochemical Problems of Mineral Processing
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Application of multi-parameter data visualization by means of autoassociative neural networks to evaluate classification possibilities of various coal types
Autorzy:
Jamroz, D.
Powiązania:
https://bibliotekanauki.pl/articles/109902.pdf
Data publikacji:
2014
Wydawca:
Politechnika Wrocławska. Oficyna Wydawnicza Politechniki Wrocławskiej
Tematy:
autoassociative neural networks
coal types
multidimensional visualization
multi-parameter
identification of data
pattern recognition
neural networks
Opis:
The significance of data visualization in modern research is growing steadily. In mineral processing scientists have to face many problems with understanding data and finding essential variables from a large amount of data registered for material or process. Hence it is necessary to apply visualization of such data, especially when a set of data is multi-parameter and very complex. This paper puts forward a proposal to introduce the autoassociative neural networks for visualization of data concerning three various types of hard coal. Apart from theoretical discussion of the method, the empirical applications of the method are presented. The results revealed that it is a useful tool for a researcher facing a complicated set of data which allows for its proper classification. The optimal neural network parameters to successfully separate the analyzed three types of coal were found out for the analyzed example.
Źródło:
Physicochemical Problems of Mineral Processing; 2014, 50, 2; 719-734
1643-1049
2084-4735
Pojawia się w:
Physicochemical Problems of Mineral Processing
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Application of multidimensional scaling to classification of various types of coal
Zastosowanie skalowania wielowymiarowego do klasyfikacji różnych typów węgli
Autorzy:
Jamróz, D.
Powiązania:
https://bibliotekanauki.pl/articles/219176.pdf
Data publikacji:
2014
Wydawca:
Polska Akademia Nauk. Czytelnia Czasopism PAN
Tematy:
skalowanie wielowymiarowe
MDS
wizualizacja danych wielowymiarowych
węgiel
identyfikacja danych
statystyczne metody graficzne
rozpoznawanie obrazów
multidimensional scaling
multidimensional data visualization
coal
identification of data
statistical graphics methods
pattern recognition
Opis:
Visualization of multidimensional data is a new way of statistical analysis of so-called statistical graphical methods. These methods allow to classify some analyzed objects, including their various features. Facing grained materials problems, like coal or ores many characteristics have an influence on the quality of product. In case of coal, many features must be taken into consideration to determine quality of the material. Apart from most obvious characteristics like particle size, particle density or ash contents there are many others which cause significant differences between considered types of material. In the paper the application of Multidimensional Scaling Method is presented which is one of the multidimensional data visualization techniques. To this purpose, sampling of three types of coal was performed, which were 31, 34.2 and 35 (according to Polish classification of coal types). First, the material was screened on sieves and then divided into density fractions. Next step was to analyze chemically the obtained particle and size fractions of researched coal. Then, the Multidimensional Scaling Method was applied to visualize the investigated set of data. It was proved that the applied methodology allows to identify certain coal types efficiently and can be used as a qualitative criterion for grained materials. However, it was impossible to achieve such identification comparing all three types of coal together. The Multidimensional Scaling Method is new technique of data analysis concerning widely understood mineral processing.
Surowce mineralne, które podlegają wzbogacaniu w celu ich lepszego wykorzystania mogą być charakteryzowane wieloma wskaźnikami opisującymi ich, interesujące przeróbkarza, cechy. Podstawowymi cechami są wielkość ziaren oraz ich gęstość, które decydują o przebiegu rozdziału zbiorów ziaren (nadaw) i efektach takiego rozdziału. Rozdział prowadzi się z reguły, w celu uzyskania produktów o zróżnicowanych wartościach średnich wybranej cechy, która zwykle charakteryzowana jest zawartością określonego składnika surowca wyznaczoną na drodze analiz chemicznych. Takie podejście do surowca mineralnego prowadzi do potraktowania go jako wielowymiarowego wektora X = [X1, …, Xn]. Zasadniczym problemem jest także wybór jednostki populacji generalnej (ziarno, jednostka objętości lub masy), co może decydować o określeniu charakteru wielowymiarowych powiązań cech wektora X. Takimi kierunkami charakteryzowania mogą być wielowymiarowe rozkłady wektora losowego X wraz ze wszystkimi konsekwencjami metody (Lyman, 1993; Niedoba, 2009; 2011; Olejnik et al., 2010; Niedoba i Surowiak, 2012), wielowymiarowe równania regresji wraz z analizą macierzy współczynników korelacji liniowej oraz korelacji cząstkowej (Niedoba, 2013c), analiza czynnikowa (Tumidajski i Saramak, 2009), czy metody wielowymiarowej wizualizacji danych, będące tematem niniejszego artykułu. Biorąc pod uwagę analizę korelacji pomiędzy badanymi cechami materiałów uziarnionych (węgli) można zidentyfikować jakie jego cechy są ze sobą istotnie powiązane. Jest to swoiste preludium do wytypowania, które cechy węgla powodują istotne różnice pomiędzy jego typami. W artykule poddano badaniu trzy typy węgla, według polskiej klasyfikacji - węgle 31, 34.2 oraz 35, pochodzące z trzech różnych kopalni Górnośląskiego Okręgu Przemysłowego. Można powiedzieć, że z punktu widzenia ich jakości były to węgle energetyczne, semi-koksujące oraz koksujące. Każdy z tych węgli został poddany podziałowi na klasy ziarnowe, przy zastosowaniu odpowiedniego zestawu sit. Następnie każdą z otrzymanych klas ziarnowych rozdzielono w cieczach ciężkich na frakcje densymetryczne. Tak otrzymane klaso-frakcje zostały dodatkowo poddane analizie chemicznej ze względu na szereg cech, tj. ciepło spalania, zawartość siarki, zawartość substancji lotnych, zawartość popiołu, miąższość. Wyniki analiz dla wybranej klasy ziarnowej przedstawiono w tabeli 1. Tym samym otrzymano siedmiowymiarowy zestaw danych, który postanowiono poddać wielowymiarowej wizualizacji za pomocą metody skalowania wielowymiarowego. Metoda skalowania wielowymiarowego (multidimensional scaling, MDS) jest jedną z nowoczesnych metod wizualizacji danych. Tego typu metody są wskazane zwłaszcza w sytuacji gdy ma się do czynienia z zestawem skomplikowanych i złożonych danych. Skalowanie wielowymiarowe jest odwzorowaniem przestrzeni n-wymiarowej w przestrzeń m-wymiarową. Oparte jest na obliczaniu odległości pomiędzy każdą parą n-wymiarowych punktów. Na podstawie tych odległości rozważana metoda ustala wzajemne położenie obrazów tych punktów w docelowej przestrzeni m-wymiarowej. Niech dij oznacza odległość pomiędzy n-wymiarowymi punktami nr i oraz j. Skalowanie wielowymiarowe polega na takim rozmieszczeniu punktów w przestrzeni m-wymiarowej, by odległość Dij liczona w tej przestrzeni pomiędzy odwzorowanymi punktami nr i oraz j była jak najbardziej zbliżona do dij. Rozdział 4 zawiera wyniki eksperymentów. Na rysunkach 1-4 widać, w jaki sposób wzrasta grupowanie punktów reprezentujących trzy różne klasy węgla (31, 34.2 oraz 35) wraz ze wzrostem parametru ITER. Widać, że punkty będące obrazami danych reprezentujących te same klasy węgla zaczynają zajmować osobne podobszary oraz zaczynają się grupować. Czytelność podziału przestrzeni rośnie wraz ze zwiększeniem parametru ITER, więc wraz z dokładniejszym dopasowaniem odległości obrazów punktów Dij w przestrzeni 2-wymiarowej do oryginalnych odległości dij pomiędzy punktami w przestrzeni n-wymiarowej. Na rysunku 4 pokazano najbardziej czytelny wynik, jaki udało się uzyskać dla danych zawierających trzy typy węgla 31, 34.2 oraz 35. Nastąpiło to przy parametrze ITER = 793. Widać wyraźnie, że obrazy punktów danych reprezentujących próbki węgla danego typu gromadzą się w skupiskach. Można zaobserwować, że na prawie całym obszarze rysunku, skupiska te można od siebie odseparować. Jednak w niektórych częściach przestrzeni obrazy punktów reprezentujących różne klasy węgla zachodzą na siebie. Przez to nie możemy na podstawie tego rysunku stwierdzić, że analizowane dane pozwalają na prawidłową klasyfikację typów węgla. Postanowiono więc przeanalizować dane reprezentujące różne typy węgla parami. Na rysunkach 5-7 przedstawiono parami węgle typu, odpowiednio, 34.2 i 35 (Rys. 5), 31 i 34.2 (Rys. 6) oraz 31 i 35 (Rys. 7). Na każdym z tych rysunków widać czytelnie, że obrazy punktów reprezentujących próbki różnych typów węgla gromadzą się w skupiskach, które łatwo można od siebie odseparować. Przeprowadzona wizualizacja wielowymiarowa przy użyciu skalowania wielowymiarowego pozwala więc stwierdzić, że informacje zawarte w analizowanych siedmiowymiarowych danych są wystarczające do prawidłowej klasyfikacji typów węgla 31, 34.2 oraz 35.
Źródło:
Archives of Mining Sciences; 2014, 59, 2; 413-425
0860-7001
Pojawia się w:
Archives of Mining Sciences
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Application of the observational tunnels method to select a set of features sufficient to identify a type of coal
Autorzy:
Jamroz, D.
Niedoba, T.
Powiązania:
https://bibliotekanauki.pl/articles/109317.pdf
Data publikacji:
2014
Wydawca:
Politechnika Wrocławska. Oficyna Wydawnicza Politechniki Wrocławskiej
Tematy:
multidimensional statistical analysis
observational tunnels method
coal
image visualization
energetic materials
Opis:
Coal is a material which has many features deciding about its quality. Among them, the decisive ones are mainly ash contents, sulfur contents and combustion heat. The paper presents the investigation of coal characteristics of three selected coal types in the context of their energetic value. For this purpose samples were collected from three different Polish mines: coal types 31, 34.2 and 35 (Polish classification of coals). Each of these materials was separated into particle size fractions (9 fractions) and then into 8 density fractions by separation in heavy liquids. For each size-density fractions obtained in this way, chemical analyses were performed which allowed for determination of such features as combustion heat, sulfur contents, ash contents, volatile parts contents and analytical moisture. Altogether, seven dimensions of grained material characteristics were obtained. The data prepared in this way was subsequently analyzed for correlation with the purpose of determining significant relations between investigated features. It was stated that the most correlated coal features are density, combustion heat, ash contents and volatile parts contents. For multidimensional analysis and identification of coal type, the modern image visualization technique, the Observational Tunnels Method, was applied. After performing seven-dimensional analysis aimed at the proper recognition of coal type, it was decided to determine the minimum amount of random variables, which describe a particular material in order to identify its type. It was stated that the crucial coal identification parameter is “analytical moisture”. Due to existing correlation between individual features, three of them were selected for testing: analytical moisture, sulfur contents and volatile parts contents. On the basis of the obtained images, it was stated that it was possible to obtain a view with the data concerning each type of coal being located in other part of the space. Subsequently, it was checked if a similar result is possible when the parameter “volatile parts contents” is replaced with highly correlated parameters “combustion heat” and “ash contents”. In both cases the exchange of these variables did not produce good enough results. This can be explained by a different scale of empirical data making it impossible to obtain a clear multidimensional image for which all three types of coal would be located in other parts of space. However, it was proved that the modern graphical and computer methods can be successfully applied to identify the types of particulate materials.
Źródło:
Physicochemical Problems of Mineral Processing; 2014, 50, 1; 185-202
1643-1049
2084-4735
Pojawia się w:
Physicochemical Problems of Mineral Processing
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Multidimensional Scaling for Symbolic Interval Data
Skalowanie wielowymiarowe dla danych symbolicznych przedziałowych
Autorzy:
Dudek, Andrzej
Powiązania:
https://bibliotekanauki.pl/articles/906289.pdf
Data publikacji:
2009
Wydawca:
Uniwersytet Łódzki. Wydawnictwo Uniwersytetu Łódzkiego
Tematy:
Multidimensional scaling
visualization
symbolic data
Opis:
Podstawowym celem skalowania wielowymiarowego jest przedstawienie relacji między obiektami w przestrzeni wielowymiarowej jako odległości w przestrzeni 2- lub 3- wymiarowej. Dane wejściowe do procedur skalowania wielowymiarowego to zazwyczaj symetryczna macierz kwadratowa wskazująca na relacje (podobieństwa lub niepodobieństwa) pomiędzy obiektami pewnego zbioru. Istnieje wiele technik klasycznego skalowania wielowymiarowego, jednak wszystkie z nich wymagają aby w poszczególnych komórkach tej macierzy znajdowały się pojedyncze wartości liczbowe. Denoeux and Masson (2002) zaproponowali rozszerzenie klasycznego skalowania wielowymiarowego na dane symboliczne w postaci przedziałów liczbowych. Danymi wejściowymi do opracowanego przez nich algorytmu 1NTERSCAL jest tabela zawierająca minimalne i maksymalne odległości pomiędzy hiperprostopadłościanami reprezentującymi obiekty. Takie same podejście występuje w algorytmach SYMSCAL i I-SCAL zaproponowanych przez Groenena i in. (2005). W artykule przedstawiony zostały najważniejsze algorytmy skalowania wielowymiarowego dla danych symbolicznych w postaci przedziałów liczbowych oraz przykłady ich zastosowania dla danych symbolicznych pochodzących z repozytorium http://www.ceremade.dauphine.fr/~touati/sodas-pagegarde.htm.
The aim of multidimensional scaling is to represent dissimilarities among objects in high dimensional space as distances in low (usually 2- or 3-) dimensional space. Usually the input to multidimensional scaling procedure is a square, symmetric matrix indicating relationships (similarities or dissimilarities) among a set of items. There are many techniques of classical multidimensional scaling but all under assumption that each entry in relationship matrix is single numeric value. Denoeux and Masson (2002) have proposed to extend multidimensional scaling onto symbolic interval data. The input to theirs INTERSCAL algorithm is interval dissimilarity table containing minimum and maximum distance between hyper-rectangles representing objects. The same approach is used in SYMSCAL and I-SCAL algorithms proposed by Groenen et al. (2005). Article presents main algorithms of multi-dimensional scaling for symbolic data in form of intervals along with some examples on datasets taken from symbolic data repository (http://www.ceremade.dauphine.fr/~touati/sodas-pagegarde.htm).
Źródło:
Acta Universitatis Lodziensis. Folia Oeconomica; 2009, 228
0208-6018
2353-7663
Pojawia się w:
Acta Universitatis Lodziensis. Folia Oeconomica
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-8 z 8

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies