Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "multi-layer artificial neural network (ANN)" wg kryterium: Temat


Wyświetlanie 1-2 z 2
Tytuł:
Experimental and numerical investigation of the deep drawing process for an automobile panel and prediction of appropriate amount of parameters by multi-layer neural network
Autorzy:
Najafabadi, S. S.
Anaraki, A. T.
Moradi, M.
Powiązania:
https://bibliotekanauki.pl/articles/281868.pdf
Data publikacji:
2017
Wydawca:
Polskie Towarzystwo Mechaniki Teoretycznej i Stosowanej
Tematy:
deep drawing
finite element analysis (FEA)
multi-layer artificial neural network (ANN)
Taguchi design
Opis:
In this paper, the deep drawing process of an automobile panel in order to select the appropriate amount of parameters has been investigated. The parameters include friction between the blank and die, blank width and length, blank thickness and gap between the blank and blank-holder. A multi-layer artificial neural network (ANN) trained by finite element analyses (FEA) is applied in order to improve forming parameters and achieve a better quality. As the FEA results are used to train the ANN, the FEA results have been verified by three experiments. Finally, an appropriate amount of each parameter is predicted by the trained ANN and a FEA has been done based on the ANN prediction to evaluate the accuracy of the trained ANN. Moreover, it is shown that the ANN could predict results within a 10 percent error. In addition, the proposed method for prediction of the appropriate parameters (ANN) is confirmed by comparing with the Taguchi design of experiment prediction. It is also shown that the model obtained by the former method has lower errors than the latter one. In this study, the Taguchi model is used to evaluate the effect of parameters on tearing and wrinkling. Based on the Taguchi design of experiment, while the blank length is the most effective parameter on tearing, the maximum height of wrinkles on flanged parts mainly depends on the blank thickness.
Źródło:
Journal of Theoretical and Applied Mechanics; 2017, 55, 2; 707-718
1429-2955
Pojawia się w:
Journal of Theoretical and Applied Mechanics
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Development of a neural statistical model for the prediction of relative humidity levels in the region of Rabat-Kenitra, North West Morocco
Autorzy:
El Azhari, Kaoutar
Abdallaoui, Badreddine
Dehbi, Ali
Abdalloui, Abdelaziz
Zineddine, Hamid
Powiązania:
https://bibliotekanauki.pl/articles/2174362.pdf
Data publikacji:
2022
Wydawca:
Instytut Technologiczno-Przyrodniczy
Tematy:
artificial neural network
ANN
learning algorithm
multi-layer perceptron
MLP
modelling
Rabat-Kenitra
relative humidity
Opis:
This article accounts for the development of a powerful artificial neural network (ANN) model, designed for the prediction of relative humidity levels, using other meteorological parameters such as the maximum temperature, minimum temperature, precipitation, wind speed, and intensity of solar radiation in the Rabat-Kenitra region (a coastal area where relative humidity is a real concern). The model was applied to a database containing a daily history of five meteorological parameters collected by nine stations covering this region from 1979 to mid-2014. It has been demonstrated that the best performing three-layer (input, hidden, and output) ANN mathematical model for the prediction of relative humidity in this region is the multi-layer perceptron (MLP) model. This neural model using the Levenberg-Marquard algorithm, with an architecture of [5-11-1] and the transfer functions Tansig in the hidden layer and Purelin in the output layer, was able to estimate relative humidity values that were very close to those observed. This was affirmed by a low mean squared error (MSE) and a high correlation coefficient (R), compared to the statistical indicators relating to the other models developed as part of this study.
Źródło:
Journal of Water and Land Development; 2022, 54; 13--20
1429-7426
2083-4535
Pojawia się w:
Journal of Water and Land Development
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-2 z 2

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies