Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "modelowanie krystalizacji" wg kryterium: Temat


Wyświetlanie 1-2 z 2
Tytuł:
Modelowanie początkowego etapu wzrostu austenitu z przechłodzonej cieczy w układzie Fe-C-Si metodą pola fazowego
Modelling of Initial Stage of Austenite Growth in Fe-C-Si System Using Phase-Field Method
Autorzy:
Wróbel, M.
Burbelko, A.
Gurgul, D.
Powiązania:
https://bibliotekanauki.pl/articles/381432.pdf
Data publikacji:
2015
Wydawca:
Polska Akademia Nauk. Czytelnia Czasopism PAN
Tematy:
modelowanie krystalizacji
pole fazowe
metoda CALPHAD
solidification modelling
phase field
CALPHAD method
Opis:
W pracy przeanalizowane zostały zmiany stężenia węgla i krzemu w fazie ciekłej i fazie γ stopu potrójnego Fe – 3,0% mas. C – 1,5% mas. Si podczas początkowego etapu wzrostu austenitu z przechłodzonej cieczy. Zmiany zachodzące na froncie krystalizacji analizowano poprzez wykorzystanie metody pola fazowego. Parametr pola fazowego ϕ jest związany ze składem fazowym: ϕ = 1 dla cieczy, ϕ = 0 dla roztworu stałego. Pole fazowe w tym przypadku nie jest zmienną konserwatywną, a dla opisu jej zmian zastosowano równanie Allen'a-Cahn'a. Za warunek początkowy symulacji przyjęto istnienie nierównowagowego zarodka fazy stałej o składzie chemicznym identycznym ze składem chemicznym przechłodzonej cieczy. W obliczeniach wykorzystano potencjały chemiczne pierwiastków w fazach. Różnica tych potencjałów stanowiła termodynamiczną siłę pędną przemiany, wywołującą przepływ pierwiastków. Wykazało to, że ścieżki zmian stężenia węgla i krzemu w fazie stałej oraz w cieczy są w znaczącym stopniu odchylone od równowagowej konody dla układu potrójnego o przyjętym składzie chemicznym. Oznacza to, że przyjęcie równowagowych współczynników rozdziału do wyznaczania zawartości pierwiastków stopowych w początkowym etapie wzrostu zarodka jest daleko idącym uproszczeniem. Przedstawiona metoda symulacji uwzględnia również wzajemny wpływ pierwiastków w obu fazach, w szczególności w austenicie, gdzie stężenie węgla na poziomie znacznie wyższym od wartości równowagowej w istotnym stopniu powoduje obniżenie zawartości krzemu.
In the paper changes of carbon and silicon concentration in liquid phase (L) and solid phase (γ) have been analysed for a triple alloy Fe-C-Si with the composition C – 3.0wt% and Si – 1.5wt%. The analysis was conducted at the initial stage of an austenite growth in the undercooled liquid. The changes occurring at the solidification front were analysed using the Phase Field method (PF). The phase field parameter ϕ is connected with the phase composition of the cell: ϕ = 1 for the liquid, ϕ = 0 for the solid phase. The phase field, in this case, is a non-conserved variable and for its description the Allen-Cahn equation was used. As an initial condition of the simulation it was assumed that the austenite nucleus had the same composition as the undercooled liquid. In the calculation chemical potential for each element in each phase was used. The difference in the chemical potential between phases was treated as the thermodynamic driving force of transformation causing the diffusion of the elements. This showed that the paths of carbon and silicon concentration changes in the solid and liquid are substantially deviated from the tie line for the triple alloy with fixed concentration. This means that the adoption of the equilibrium distribution coefficients at the initial stage of the nucleus growth is a big simplification. Presented method of the simulation takes also into account the mutual influence of the elements in both phases, in particular in the austenite where the carbon concentration is much higher than the equilibrium value causing reduction of the silicon concentration.
Źródło:
Archives of Foundry Engineering; 2015, 15, 4 spec.; 159-162
1897-3310
2299-2944
Pojawia się w:
Archives of Foundry Engineering
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Reduction of the calculation time in the modeling of the microstructure formation by CAFD method
Redukcja czasu obliczeń w modelowaniu kształtowania się mikrostruktury podczas krystalizacji metodą CAFD
Autorzy:
Burbelko, A.
Początek, J.
Powiązania:
https://bibliotekanauki.pl/articles/263911.pdf
Data publikacji:
2011
Wydawca:
Akademia Górniczo-Hutnicza im. Stanisława Staszica w Krakowie. Wydawnictwo AGH
Tematy:
modelowanie krystalizacji
automat komórkowy
redukcja czasu obliczeń
solidification modeling
cellular automation
reduction of the calculation time
Opis:
In the CAFD solidification modeling (Cellular Automaton + Finite Difference) as the growing grains shape, as the final microstructure of the alloy were not superimposed beforehand but were obtained in the simulation. CAFD models take into account heat transfer, components diffusion in the solid and liquid phases, nucleation kineties, solid border migration and liquid phase vanishing etc. Computer methods that include the solutions for all above mentioned phenomena are very time-consuming. The "bottleneck" of the models is the temperature field calculation. Acceleration of the well-known Gauss-Seidel (GS) iterative method of the numerical solution of the difference equations set was proposed by mean the selective reduction of the iteration number for the different equations used in the temperature field modeling. Computer modeling results obtained by the known GS method and results of the proposed reduced scheme using were compared with the known analytical solution of the Schwarz task. It was shown that the reducing of the solution tolerance results in the substantial increase of the solution time but has a smali influence on the mean quadrate deviation between the numerical results and the analytical one. Proposed solution scheme results in the significant reduction of the calculation quantity and the simulation time.
W modelach krystalizacji typu CAFD (Cellular Automaton + Finite Difference), zarówno kształt rosnących ziaren, jak i ich końcowa struktura nie są zakładane z góry, lecz są wynikiem modelowania. W trakcie modelowania należy uwzględnić szereg zjawisk fizycznych takich jak: przenoszenie ciepła, dyfuzja składników w ciekłej i stałej fazie, kinetyka zarodkowania, rozrost ziaren i zanikanie fazy ciekłej i innych. Metody numeryczne, uwzględniające wszystkie wyżej wymienione zjawiska są bardzo czasochłonne. Wąskim gardłem modelu jest wyznaczenie pola temperatury. Z tego powodu została podjęta próba przyśpieszenia rozwiązania numerycznego Gaussa-Seidela (GS) dla schematu niejawnego obliczenia pola temperatury za pomocą zróżnicowanej ilości kolejnych przybliżeń stosowanych w iteracyjnym rozwiązaniu układu równań różnicowych modelu. Wyniki modelowania numerycznego otrzymane z wykorzystaniem zarówno znanego sposobu GS, jak i zróżnicowanej ilości iteracji porównano z rozwiązaniem analitycznym zadania Schwarza. Pokazano, że zmniejszenie tolerancji obliczeń znacznie wydłuża czas potrzebny dla uzyskania rozwiązania i ma niewielki wpływ na średniokwadratowe odchylenie wyników obu rozwiązań od rozwiązania wzorcowego. Zaproponowany schemat pozwala znacznie zredukować ilość wykonywanych operacji i powoduje skrócenie czasu modelowania.
Źródło:
Metallurgy and Foundry Engineering; 2011, 37, 1; 97-106
1230-2325
2300-8377
Pojawia się w:
Metallurgy and Foundry Engineering
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-2 z 2

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies