- Tytuł:
-
Zastosowanie metody optymalizacji nieliniowej Neldera-Meada do konstrukcji odwzorowań kartograficznych o możliwie najlepszym rozkładzie zniekształceń odwzorowawczych - na przykładzie odwzorowania azymutalnego
Application of Nelder-Mead nonlinear optimization method for minimizing map projection distortion - demostrated on an azimuthal projection - Autorzy:
- Latuszek, K J
- Powiązania:
- https://bibliotekanauki.pl/articles/346198.pdf
- Data publikacji:
- 2013
- Wydawca:
- Polskie Towarzystwo Informacji Przestrzennej
- Tematy:
-
kartografia matematyczna
odwzorowania azymutalne
minimalizacja zniekształceń odwzorowawczych
kryterium Airy’ego
algorytm Neldera-Meada
mathematical cartography
azimuthal projections
minimization of projection distortion
Airy's criterion
Nelder-Mead algorithm - Opis:
-
Poszukiwanie odwzorowań o optymalnym rozkładzie zniekształceń odwzorowawczych, według kryteriów integrujących różne miary tych zniekształceń, jest jednym z ważniejszych zadań kartografii matematycznej. W XIX wieku zostały zaproponowane liczne kryteria całkowe, których minimalizacja dla danego odwzorowania utożsamiana jest z uzyskaniem dla niego optymalnego rozkładu zniekształceń. W erze masowej komputeryzacji i wzrostu możliwości obliczeniowej komputerów, popularne stały się obok rozwiązań ścisłych wspomnianych kryteriów, przybliżone rozwiązania numeryczne – oparte na metodach optymalizacji nieliniowej. Bezgradientowa metoda optymalizacji nieliniowej zaproponowana przez Neldera-Meada (Nelder i Mead, 1965), została wykorzystana do optymalizacji rozkładu zniekształceń odwzorowań sfery dla opracowań małoskalowych przez Cantersa (2002). Canters optymalizował odwzorowania całego globu opisane przez szeregi dwuparametrowych wielomianów stopnia piątego, gdzie parametrami były szerokość i długość geograficzna na sferze lub współrzędne płaskie pewnego wyjściowego odwzorowania. Za funkcję celu przyjmowana była wartość zrewidowanej miary Petersa (Canters, 2002) – porównującej dużą liczbę losowo wybranych odległości na powierzchni oryginału z odpowiadającymi im odległościami na powierzchni obrazu. W niniejszej pracy wspomniany algorytm zostanie wykorzystany do optymalizacji rozkładu zniekształceń odwzorowania azymutalnego normalnego sfery według kryterium Airy’ego. Uzyskane rozwiązanie będzie porównane z rozwiązaniem ścisłym dla tego kryterium, podanym przez Gdowskiego (1967). Promień równoleżnika we wzorach na współrzędne płaskie optymalizowanego odwzorowania wyrażony będzie kombinacją liniową promienia w odwzorowaniu początkowym i wyrazów szeregu potęgowego odległości sferycznej od bieguna północnego ∂.
The search for map projections with least possible distortion, satisfying selected criteria which integrate different measures of distortion, is one of the more important tasks of cartography. In the nineteenth century, many integral based criterions have been proposed, minimization of which is considered as achieving an optimal distortion pattern for a given projection. In the present time of mass computerization and constantly rising computation speed, popularity of numerical solutions of the mentioned criteria has risen. These numerical solutions are achieved by application of nonlinear optimization methods. A nonlinear function minimization method proposed by Nelder and Mead (Nelder and Mead, 1965) was used to optimize map projections of the spherical globe for small scale mapping by Frank Canters (2002). Canters optimized projections of the whole globe, for which flat coordinates were given by fifth order polynomials. Parameters of these polynomials were either longitude and latitude on the globe or flat coordinates of a given parent projection. The objective function was the revised Peters measure of distortion (Canters, 2002), which is a finite distortion measure comparing distance between two given points on the globe with their distance on the map, for a large set of randomly chosen points. In the present study, Nelder-Mead algorithm is used to minimize distortion of an azimuthal projection of the sphere in the normal aspect, so that it will satisfy Airy’s criterion. The obtained solution will be then compared with an analytical-strict solution for this criterion, as given by Gdowski (1967). The parallel radius in the formulas describing flat coordinates of the optimized projection is written as a linear combination of the parent projections radius and a power series of ∂ , which denotes spherical distance from the north pole. - Źródło:
-
Roczniki Geomatyki; 2013, 11, 5(62); 75-85
1731-5522
2449-8963 - Pojawia się w:
- Roczniki Geomatyki
- Dostawca treści:
- Biblioteka Nauki