Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "minimal positive solutions" wg kryterium: Temat


Wyświetlanie 1-2 z 2
Tytuł:
On a Robin (p, q)-equation with a logistic reaction
Autorzy:
Papageorgiou, Nikolaos S.
Vetro, Calogero
Vetro, Francesca
Powiązania:
https://bibliotekanauki.pl/articles/254839.pdf
Data publikacji:
2019
Wydawca:
Akademia Górniczo-Hutnicza im. Stanisława Staszica w Krakowie. Wydawnictwo AGH
Tematy:
positive solutions
superdiffusive reaction
local minimizers
maximum principle
minimal positive solutions
Robin boundary condition
indefinite potential
Opis:
We consider a nonlinear nonhomogeneous Robin equation driven by the sum of a p-Laplacian and of a q-Laplacian ((p,q)-equation) plus an indefinite potential term and a parametric reaction ol logistic type (superdiffusive case). We prove a bilurcation-type result describing the changes in the set ol positive solutions as the parameter λ > 0 varies. Also, we show that lor every admissible parameter λ > 0, the problem admits a smallest positive solution. Keywords: positive solutions, superdiffusive reaction, local minimizers, maximum principle, min
Źródło:
Opuscula Mathematica; 2019, 39, 2; 227-245
1232-9274
2300-6919
Pojawia się w:
Opuscula Mathematica
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Positive stationary solutions of convection-diffusion equations for superlinear sources
Autorzy:
Orpel, Aleksandra
Powiązania:
https://bibliotekanauki.pl/articles/2216153.pdf
Data publikacji:
2022
Wydawca:
Akademia Górniczo-Hutnicza im. Stanisława Staszica w Krakowie. Wydawnictwo AGH
Tematy:
semipositone problems
positive stationary solutions
minimal solutions with finite energy
sub and supersolutions methods
Opis:
We investigate the existence and multiplicity of positive stationary solutions for a certain class of convection-diffusion equations in exterior domains. This problem leads to the following elliptic equation Δu(x) + f(x, u(x)) + g(x)x · ∇u(x) = 0, for x ∈ ΩR = {x ∈ Rn, ∥x∥ > R}, n > 2. The goal of this paper is to show that our problem possesses an uncountable number of nondecreasing sequences of minimal solutions with finite energy in a neighborhood of infinity. We also prove that each of these sequences generates another solution of the problem. The case when f(x, ·) may be negative at the origin, so-called semipositone problem, is also considered. Our results are based on a certain iteration schema in which we apply the sub and supersolution method developed by Noussair and Swanson. The approach allows us to consider superlinear problems with convection terms containing functional coefficient g without radial symmetry.
Źródło:
Opuscula Mathematica; 2022, 42, 5; 727-749
1232-9274
2300-6919
Pojawia się w:
Opuscula Mathematica
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-2 z 2

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies