Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "microservice scaler" wg kryterium: Temat


Wyświetlanie 1-1 z 1
Tytuł:
Microservice-Oriented Workload Prediction Using Deep Learning
Autorzy:
Ştefan, Sebastian
Niculescu, Virginia
Powiązania:
https://bibliotekanauki.pl/articles/2060924.pdf
Data publikacji:
2022
Wydawca:
Politechnika Wrocławska. Oficyna Wydawnicza Politechniki Wrocławskiej
Tematy:
microservice
web service
workload prediction
performance modeling
microservice-applications
microservice scaler
Opis:
Background: Service oriented architectures are becoming increasingly popular due to their flexibility and scalability which makes them a good fit for cloud deployments. Aim: This research aims to study how an efficient workload prediction mechanism for a practical proactive scaler, could be provided. Such a prediction mechanism is necessary since in order to fully take advantage of on-demand resources and reduce manual tuning, an auto-scaling, preferable predictive, approach is required, which means increasing or decreasing the number of deployed services according to the incoming workloads. Method: In order to achieve the goal, a workload prediction methodology that takes into account microservice concerns is proposed. Since, this should be based on a performant model for prediction, several deep learning algorithms were chosen to be analysed against the classical approaches from the recent research. Experiments have been conducted in order to identify the most appropriate prediction model. Results: The analysis emphasises very good results obtained using the MLP (MultiLayer Perceptron) model, which are better than those obtained with classical time series approaches, with a reduction of the mean error prediction of 49%, when using as data, two Wikipedia traces for 12 days and with two different time windows: 10 and 15min. Conclusion: The tests and the comparison analysis lead to the conclusion that considering the accuracy, but also the computational overhead and the time duration for prediction, MLP model qualifies as a reliable foundation for the development of proactive microservice scaler applications.
Źródło:
e-Informatica Software Engineering Journal; 2022, 16, 1; art. no. 220107
1897-7979
Pojawia się w:
e-Informatica Software Engineering Journal
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-1 z 1

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies