Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "mel-cepstral coefficients" wg kryterium: Temat


Wyświetlanie 1-9 z 9
Tytuł:
Determination of Input Parameters of the Neural Network Model, Intended for Phoneme Recognition of a Voice Signal in the Systems of Distance Learning
Autorzy:
Akhmetov, B.
Tereykovsky, I.
Doszhanova, A.
Tereykovskaya, L.
Powiązania:
https://bibliotekanauki.pl/articles/226378.pdf
Data publikacji:
2018
Wydawca:
Polska Akademia Nauk. Czytelnia Czasopism PAN
Tematy:
neural networks
phonemes
recognition of a voice signal
system of distance learning
mel-cepstral coefficients
spectral analysis
Opis:
The article is devoted to the problem of voice signals recognition means introduction in the system of distance learning. The results of the conducted research determine the prospects of neural network means of phoneme recognition. It is also shown that the main difficulties of creation of the neural network model, intended for recognition of phonemes in the system of distance learning, are connected with the uncertain duration of a phoneme-like element. Due to this reason for recognition of phonemes, it is impossible to use the most effective type of neural network model on the basis of a multilayered perceptron, at which the number of input parameters is a fixed value. To mitigate this shortcoming, the procedure, allowing to transform the non-stationary digitized voice signal to the fixed quantity of mel-cepstral coefficients, which are the basis for calculation of input parameters of the neural network model, is developed. In contrast to the known ones, the possibility of linear scaling of phoneme-like elements is available in the procedure. The number of computer experiments confirmed expediency of the fact that the use of the offered coding procedure of input parameters provides the acceptable accuracy of neural network recognition of phonemes under near-natural conditions of the distance learning system. Moreover, the prospects of further research in the field of development of neural network means of phoneme recognition of a voice signal in the system of distance learning is connected with an increase in admissible noise level. Besides, the adaptation of the offered procedure to various natural languages, as well as to other applied tasks, for instance, a problem of biometric authentication in the banking sector, is also of great interest.
Źródło:
International Journal of Electronics and Telecommunications; 2018, 64, 4; 425-432
2300-1933
Pojawia się w:
International Journal of Electronics and Telecommunications
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Enhancement in Bearing Fault Classification Parameters Using Gaussian Mixture Models and Mel Frequency Cepstral Coefficients Features
Autorzy:
Atmani, Youcef
Rechak, Said
Mesloub, Ammar
Hemmouche, Larbi
Powiązania:
https://bibliotekanauki.pl/articles/177335.pdf
Data publikacji:
2020
Wydawca:
Polska Akademia Nauk. Czasopisma i Monografie PAN
Tematy:
bearing faults
Gaussian mixture models
Mel frequency cepstral coefficients
feature extraction
diagnosis
Opis:
Last decades, rolling bearing faults assessment and their evolution with time have been receiving much interest due to their crucial role as part of the Conditional Based Maintenance (CBM) of rotating machinery. This paper investigates bearing faults diagnosis based on classification approach using Gaussian Mixture Model (GMM) and the Mel Frequency Cepstral Coefficients (MFCC) features. Throughout, only one criterion is defined for the evaluation of the performance during all the cycle of the classification process. This is the Average Classification Rate (ACR) obtained from the confusion matrix. In every test performed, the generated features vectors are considered along to discriminate between four fault conditions as normal bearings, bearings with inner and outer race faults and ball faults. Many configurations were tested in order to determinate the optimal values of input parameters, as the frame analysis length, the order of model, and others. The experimental application of the proposed method was based on vibration signals taken from the bearing datacenter website of Case Western Reserve University (CWRU). Results show that proposed method can reliably classify different fault conditions and have a highest classification performance under some conditions.
Źródło:
Archives of Acoustics; 2020, 45, 2; 283-295
0137-5075
Pojawia się w:
Archives of Acoustics
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Porównanie wyników analizy cepstralnej z innymi parametrami oceny głosu u pacjentów z dysfoniami zawodowymi
Comparison of cepstral coefficients to other voice evaluation parameters in patients with occupational dysphonia
Autorzy:
Niebudek-Bogusz, Ewa
Strumiłło, Paweł
Wiktorowicz, Justyna
Śliwińska-Kowalska, Mariola
Powiązania:
https://bibliotekanauki.pl/articles/2166319.pdf
Data publikacji:
2014-11-05
Wydawca:
Instytut Medycyny Pracy im. prof. dra Jerzego Nofera w Łodzi
Tematy:
kompleksowa ocena głosu
współczynniki cepstralne MFCC
zawodowe zaburzenia głosu
complex voice assessment
mel-cepstral coefficients
MFCCs
occupational voice disorders
Opis:
Wprowadzenie: W ostatnim czasie wśród obiektywnych metod oceny głosu uznaniem cieszy się analiza akustyczna oparta na wyznaczaniu współczynników cepstralnych MFCC (mel-frequency cepstral coefficients). Celem badania była ocena ich zastosowania w diagnozowaniu dysfonii zawodowych w porównaniu z innymi subiektywnymi i obiektywnymi parametrami diagnostycznymi zaburzeń głosu. Materiał i metody: W badaniu wzięły udział 2 grupy kobiet: grupa badana - 55 nauczycielek (średni wiek: 45 lat) z dysfoniami o podłożu zawodowym, potwierdzonymi badaniem laryngowideostroboskopowym, oraz grupa porównawcza - 40 kobiet z głosem prawidłowym (średni wiek: 43 lata). Próbki dźwiękowe (samogłoska ‘a' oraz 4 znormalizowane fonetycznie zdania) poddano analizie MFCC. Wyniki porównano z parametrami akustycznymi (z grupy jittera, z grupy shimmera, parametrem oceny szumów NHR i współczynnikiem chrypki Yanagihary), parametrem aerodynamicznym (maksymalnym czasem fonacji) i parametrami subiektywnymi (skalą percepcyjną GRBAS i wskaźnikiem niepełnosprawności głosowej VHI). Wyniki: Analiza cepstralna wykazała znaczące różnice między grupą badaną a porównawczą, istotne dla współczynników MFCC2, MFCC3, MFCC5, MFCC6, MFCC8, MFCC10, szczególnie dla MFCC6 (p < 0,001) oraz dla MFCC8 (p < 0,009), co może sugerować ich przydatność kliniczną. Z kolei w grupie badanej MFCC4, MFCC8 i MFCC10 istotnie korelowały z większością zastosowanych parametrów obiektywnych oceny głosu. Ponadto współczynnik MFCC8, który u badanych nauczycielek korelował istotnie z wszystkimi ww. 8 parametrami obiektywnymi, wykazał też istotną zależność z cechą dystynktywną A (asthenity) subiektywnej skali GRBAS, cechującej głos słaby, zmęczony. Wnioski: Analiza cepstralna, oparta na wyznaczaniu współczynników MFCC, jest dobrze rokującym narzędziem do obiektywnej diagnostyki dysfonii zawodowych, które bardziej niż inne metody analizy akustycznej odzwierciedla cechy percepcyjne głosu. Med. Pr. 2013;64(6):805–816
Background: Special consideration has recently been given to cepstral analysis with mel-frequency cepstral coefficients (MFCCs). The aim of this study was to assess the applicability of MFCCs in acoustic analysis for diagnosing occupational dysphonia in comparison to subjective and objective parameters of voice evaluation. Materials and Methods: The study comprised 2 groups, one of 55 female teachers (mean age: 45 years) with occupational dysphonia confirmed by videostroboscopy and 40 female controls with normal voice (mean age: 43 years). The acoustic samples involving sustained vowels "a" and four standardized sentences were analyzed by computed analysis of MFCCs. The results were compared to acoustic parameters of jitter and shimmer groups, noise to harmonic ratio, Yanagihara index evaluating the grade of hoarseness, the aerodynamic parameter: maximum phonation time and also subjective parameters: GRBAS perceptual scale and Voice Handicap Index (VHI). Results: The compared results revealed differences between the study and control groups, significant for MFCC2, MFCC3, MFCC5, MFCC6, MFCC8, MFCC10, particularly for MFCC6 (p < 0.001) and MFCC8 (p < 0.009), which may suggest their clinical applicability. In the study group, MFCC4, MFCC8 and MFCC10 correlated significantly with the major objective parameters of voice assessment. Moreover, MFCC8 coefficient, which in the female teachers correlated with all eight objective parameters, also showed the significant relation with perceptual voice feature A (asthenity) of subjective scale GRBAS, characteristic of weak tired voice. Conclusions: The cepstral analysis with mel frequency cepstral coefficients is a promising tool for evaluating occupational voice disorders, capable of reflecting the perceptual voice features better than other methods of acoustic analysis. Med Pr 2013;64(6):805–816
Źródło:
Medycyna Pracy; 2013, 64, 6; 805-816
0465-5893
2353-1339
Pojawia się w:
Medycyna Pracy
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Music Performers Classification by Using Multifractal Features : A Case Study
Autorzy:
Reljin, N.
Pokrajac, D.
Powiązania:
https://bibliotekanauki.pl/articles/177266.pdf
Data publikacji:
2017
Wydawca:
Polska Akademia Nauk. Czytelnia Czasopism PAN
Tematy:
music classification
multifractal analysis
support vector machines
cross-validation
mel-frequency cepstral coefficients
Opis:
In this paper, we investigated the possibility to classify different performers playing the same melodies at the same manner being subjectively quite similar and very difficult to distinguish even for musically skilled persons. For resolving this problem we propose the use of multifractal (MF) analysis, which is proven as an efficient method for describing and quantifying complex natural structures, phenomena or signals. We found experimentally that parameters associated to some characteristic points within the MF spectrum can be used as music descriptors, thus permitting accurate discrimination of music performers. Our approach is tested on the dataset containing the same songs performed by music group ABBA and by actors in the movie Mamma Mia. As a classifier we used the support vector machines and the classification performance was evaluated by using the four-fold cross-validation. The results of proposed method were compared with those obtained using mel-frequency cepstral coefficients (MFCCs) as descriptors. For the considered two-class problem, the overall accuracy and F-measure higher than 98% are obtained with the MF descriptors, which was considerably better than by using the MFCC descriptors when the best results were less than 77%.
Źródło:
Archives of Acoustics; 2017, 42, 2; 223-233
0137-5075
Pojawia się w:
Archives of Acoustics
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
A cough-based COVID-19 detection with gammatone and Mel-frequency cepstral coefficients
Autorzy:
Benmalek, Elmehdi
El Mhamdi, Jamal
Jilbab, Abdelilah
Jbari, Atman
Powiązania:
https://bibliotekanauki.pl/articles/2203646.pdf
Data publikacji:
2023
Wydawca:
Polska Akademia Nauk. Polskie Towarzystwo Diagnostyki Technicznej PAN
Tematy:
COVID-19
cough recordings
machine learning
mel-frequency cepstral coefficients
gammatone cepstral coefficients
feature selection
uczenie maszynowe
współczynniki mel-cepstralne
Opis:
Many countries have adopted a public health approach that aims to address the particular challenges faced during the pandemic Coronavirus disease 2019 (COVID-19). Researchers mobilized to manage and limit the spread of the virus, and multiple artificial intelligence-based systems are designed to automatically detect the disease. Among these systems, voice-based ones since the virus have a major impact on voice production due to the respiratory system's dysfunction. In this paper, we investigate and analyze the effectiveness of cough analysis to accurately detect COVID-19. To do so, we distinguished positive COVID patients from healthy controls. After the gammatone cepstral coefficients (GTCC) and the Mel-frequency cepstral coefficients (MFCC) extraction, we have done the feature selection (FS) and classification with multiple machine learning algorithms. By combining all features and the 3-nearest neighbor (3NN) classifier, we achieved the highest classification results. The model is able to detect COVID-19 patients with accuracy and an f1-score above 98 percent. When applying FS, the higher accuracy and F1-score were achieved by the same model and the ReliefF algorithm, we lose 1 percent of accuracy by mapping only 12 features instead of the original 53.
Źródło:
Diagnostyka; 2023, 24, 2; art. no. 2023214
1641-6414
2449-5220
Pojawia się w:
Diagnostyka
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Marine Mammals Classification using Acoustic Binary Patterns
Autorzy:
Nadir, Maheen
Adnan, Syed M.
Aziz, Sumair
Khan, Muhammad Umar
Powiązania:
https://bibliotekanauki.pl/articles/1953520.pdf
Data publikacji:
2020
Wydawca:
Polska Akademia Nauk. Czasopisma i Monografie PAN
Tematy:
marine mammals
1D Local Binary Patterns
Mel frequency cepstral coefficients
feature extraction
passive acoustic monitoring
Opis:
Marine mammal identification and classification for passive acoustic monitoring remain a challenging task. Mainly the interspecific and intraspecific variations in calls within species and among different individuals of single species make it more challenging. Varieties of species along with geographical diversity induce more complications towards an accurate analysis of marine mammal classification using acoustic signatures. Prior methods for classification focused on spectral features which result in increasing bias for contour base classifiers in automatic detection algorithms. In this study, acoustic marine mammal classification is performed through the fusion of 1D Local Binary Pattern (1D-LBP) and Mel Frequency Cepstral Coefficient (MFCC) based features. Multi-class Support Vector Machines (SVM) classifier is employed to identify different classes of mammal sounds. Classification of six species named Tursiops truncatus, Delphinus delphis, Peponocephala electra, Grampus griseus, Stenella longirostris, and Stenella attenuate are targeted in this research. The proposed model achieved 90.4% accuracy on 70-30% training testing and 89.6% on 5-fold cross-validation experiments.
Źródło:
Archives of Acoustics; 2020, 45, 4; 721-731
0137-5075
Pojawia się w:
Archives of Acoustics
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Wykorzystanie metody niejawnych modeli Markowa w automatycznej detekcji wybranych wad wymowy
Application Hidden Markov Models to Automatic Detection of Speech Disorder
Autorzy:
Wielgat, R.
Zieliński, T.
Świętojański, P.
Żołądź, P.
Woźniak, T.
Grabias, S.
Król, D.
Powiązania:
https://bibliotekanauki.pl/articles/152366.pdf
Data publikacji:
2007
Wydawca:
Stowarzyszenie Inżynierów i Techników Mechaników Polskich
Tematy:
współczynniki HFCC
współczynniki MFCC
niejawne modele Markowa
terapia logopedyczna
human factor cepstral coefficients
Mel-frequency cepstral coefficients
hidden markov models
logopedic therapy
Opis:
W artykule przedstawiono wyniki badań dotyczących automatycznej detekcji wad wymowy u dzieci. Jako materiał badawczy zostały wykorzystane nagrania pochodzące od dzieci z wadami wymowy. Zadanie polegało na rozpoznaniu nieprawidłowo realizowanego fonemu w wybranych słowach testowych. Detekcja była dokonywana za pomocą metod rozpoznawania mowy, w których jako cec sygnału mowy użyto dwóch najbardziej obiecujących rodzajów cech: współczynnika MFCC praz współczynników HFCC. Jako klasyfikatora użyto metody niejawnych modeli Markowa (HMM), gdzie modelowanymi jednostkami fonetycznimi były zarówno fonemy jak i całe słowa. W badanych metodach dobrano ich parametry w celu zmaksymalizowania skuteczności rozpoznawania. W artykule zaprezentowano również analizę porównawczą wyników rozpoznawania otrzymanych z wykorzystaniem metody HMM oraz testowanej w poprzednich pracach metody nieliniowej transformacji czasowej (DTW).
The results of research on automatic detection of the pathological phoneme pronunciation are presented in the paper. Speech samples came from speech impaired children and persons who imitated pathological phoneme pronunciation. The recognition task was to find wrongly realized phoneme in the selected test utterances. At the reature extraction stage the most effective features` types have been used: standard Mel-Frequency Cepstral Coefficients (MFCC) and recently proposed Human Factor Cepstral Coefficients (HFCC). As a classificator hidden Markov models, with modeled speech unit being a phoneme as well as a whole word, have been used. The parameters of the HMMs were adjusted in order to achieve the best recognition accuracy. Comparision of the HMM and DTW methods is also presented in the paper.
Źródło:
Pomiary Automatyka Kontrola; 2007, R. 53, nr 9 bis, 9 bis; 417-420
0032-4140
Pojawia się w:
Pomiary Automatyka Kontrola
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Effect of Time-domain Windowing on Isolated Speech Recognition System Performance
Autorzy:
Ananthakrishna, Thalengala
Anitha, H.
Girisha, T.
Powiązania:
https://bibliotekanauki.pl/articles/2055228.pdf
Data publikacji:
2022
Wydawca:
Polska Akademia Nauk. Czytelnia Czasopism PAN
Tematy:
hidden Markov model
HMM
isolated speech recognition system
ISR
Kannada language
mono-phone model
Mel frequency cepstral coefficients
MFCC
Opis:
Speech recognition system extract the textual data from the speech signal. The research in speech recognition domain is challenging due to the large variabilities involved with the speech signal. Variety of signal processing and machine learning techniques have been explored to achieve better recognition accuracy. Speech is highly non-stationary in nature and therefore analysis is carried out by considering short time-domain window or frame. In the speech recognition task, cepstral (Mel frequency cepstral coefficients (MFCC)) features are commonly used and are extracted for short time-frame. The effectiveness of features depend upon duration of the time-window chosen. The present study is aimed at investigation of optimal time-window duration for extraction of cepstral features in the context of speech recognition task. A speaker independent speech recognition system for the Kannada language has been considered for the analysis. In the current work, speech utterances of Kannada news corpus recorded from different speakers have been used to create speech database. The hidden Markov tool kit (HTK) has been used to implement the speech recognition system. The MFCC along with their first and second derivative coefficients are considered as feature vectors. Pronunciation dictionary required for the study has been built manually for mono-phone system. Experiments have been carried out and results have been analyzed for different time-window lengths. The overlapping Hamming window has been considered in this study. The best average word recognition accuracy of 61.58% has been obtained for a window length of 110 msec duration. This recognition accuracy is comparable with the similar work found in literature. The experiments have shown that best word recognition performance can be achieved by tuning the window length to its optimum value.
Źródło:
International Journal of Electronics and Telecommunications; 2022, 68, 1; 161--166
2300-1933
Pojawia się w:
International Journal of Electronics and Telecommunications
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Hierarchical Classification of Environmental Noise Sources Considering the Acoustic Signature of Vehicle Pass-Bys
Autorzy:
Valero, X.
Alias, F.
Powiązania:
https://bibliotekanauki.pl/articles/176616.pdf
Data publikacji:
2012
Wydawca:
Polska Akademia Nauk. Czytelnia Czasopism PAN
Tematy:
acoustic signature
environmental noise monitoring
Gaussian mixture models
hierarchical classification
mel-frequency cepstral coefficients (MFCC)
sound classification
traffic noise
vehicle pass-by
Opis:
This work is focused on the automatic recognition of environmental noise sources that affect humans’ health and quality of life, namely industrial, aircraft, railway and road traffic. However, the recognition of the latter, which have the largest influence on citizens’ daily lives, is still an open issue. Therefore, although considering all the aforementioned noise sources, this paper especially focuses on improving the recognition of road noise events by taking advantage of the perceived noise differences along the road vehicle pass-by (which may be divided into different phases: approaching, passing and receding). To that effect, a hierarchical classification scheme that considers these phases independently has been implemented. The proposed classification scheme yields an averaged classification accuracy of 92.5%, which is, in absolute terms, 3% higher than the baseline (a traditional flat classification scheme without hierarchical structure). In particular, it outperforms the baseline in the classification of light and heavy vehicles, yielding a classification accuracy 7% and 4% higher, respectively. Finally, listening tests are performed to compare the system performance with human recognition ability. The results reveal that, although an expert human listener can achieve higher recognition accuracy than the proposed system, the latter outperforms the non-trained listener in 10% in average.
Źródło:
Archives of Acoustics; 2012, 37, 4; 423-434
0137-5075
Pojawia się w:
Archives of Acoustics
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-9 z 9

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies