Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "medical image classification" wg kryterium: Temat


Wyświetlanie 1-6 z 6
Tytuł:
Brain atrophy progress detection in MR images
Autorzy:
Kuczyński, K.
Stęgierski, R.
Siczek, M.
Powiązania:
https://bibliotekanauki.pl/articles/333021.pdf
Data publikacji:
2010
Wydawca:
Uniwersytet Śląski. Wydział Informatyki i Nauki o Materiałach. Instytut Informatyki. Zakład Systemów Komputerowych
Tematy:
wymiar fraktalny
obrazowanie metodą rezonansu magnetycznego
klasyfikacja medyczna obrazu
brain atrophy detection
fractal dimension
MRI
medical image classification
Opis:
Alzheimer's, Parkinson's and other dementive diseases currently pose an important social problem. High brain atrophy level is one of the most important symptoms of these disorders, but it also may result from normal ageing processes. The purpose of the presented research is to design methods that support detection of dementia symptoms in radiological images. The proposed framework consists of image registration procedure, brain extraction and tissue segmentation and the exact analysis of image series (fractal and volumetric properties).
Źródło:
Journal of Medical Informatics & Technologies; 2010, 16; 187-192
1642-6037
Pojawia się w:
Journal of Medical Informatics & Technologies
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Approach to classifying data with highly localized unmarked features using neural networks
Autorzy:
Grzeszczuk, Rafał
Powiązania:
https://bibliotekanauki.pl/articles/305688.pdf
Data publikacji:
2019
Wydawca:
Akademia Górniczo-Hutnicza im. Stanisława Staszica w Krakowie. Wydawnictwo AGH
Tematy:
classification
neural networks
medical image analysis
Opis:
To face the increasing demand of quality healthcare, cutting-edge automation technology is being applied in demanding areas such as medical imaging. This paper proposes a novel approach to classification problems on datasets with sparse highly localized features. It is based on the use of a saliency map in the amplification of features. Unlike previous efforts, this approach does not use any prior information about feature localization. We present an experimental study based on the Diabetic Retinopathy classification problem, in which our method has shown to achieve an over 20%-higher accuracy in solving a two-class Diabetic Retinopathy classification problem than a naive approach based solely on residual neural networks. The dataset consists of 35,120 images of various qualities, inconsistent resolutions, and aspect ratios.
Źródło:
Computer Science; 2019, 20 (3); 329-342
1508-2806
2300-7036
Pojawia się w:
Computer Science
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
A computer aided dignostic system for survival analysis after EVAR treatment of EVAR
Autorzy:
Maiora, J.
Grańa, M.
Powiązania:
https://bibliotekanauki.pl/articles/333534.pdf
Data publikacji:
2011
Wydawca:
Uniwersytet Śląski. Wydział Informatyki i Nauki o Materiałach. Instytut Informatyki. Zakład Systemów Komputerowych
Tematy:
analiza obrazów medycznych
rejestracja
klasyfikacja
medical image analysis
registration
classification
Opis:
Abdominal Aortic Aneurysm (AAA) is a local dilation of the Aorta that occurs between the renal and iliac arteries. Recently developed treatment involves the insertion of a endovascular prosthetic (EVAR), which has the advantage of being a minimally invasive procedure but also requires monitoring to analyze postoperative patient outcomes. The most widespread method for monitoring is computerized axial tomography (CAT) imaging, which allows 3D reconstructions and segmentations of the aorta's lumen of the patient under study. Previously published methods measure the deformation of the aorta between two studies of the same patient using image registration techniques. This paper applies neural network and statistical classifiers to build a predictor of patient survival. The features used for classification are the volume registration quality measures after each of the image registration steps. This system provides the medical team an additional decision support tool.
Źródło:
Journal of Medical Informatics & Technologies; 2011, 18; 51-58
1642-6037
Pojawia się w:
Journal of Medical Informatics & Technologies
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Metody analizy obrazu – analiza obrazu mammograficznego na podstawie cech wyznaczonych z tekstury
Image analysis methods - analysis of mammographic image based on textural features
Autorzy:
Lazarek, J.
Powiązania:
https://bibliotekanauki.pl/articles/408690.pdf
Data publikacji:
2013
Wydawca:
Politechnika Lubelska. Wydawnictwo Politechniki Lubelskiej
Tematy:
mammografia
obrazowanie medyczne
analiza tekstury
klasyfikacja obrazów
mammography
medical diagnostic imaging
image texture analysis
image classification
Opis:
W artykule przedstawiono analizę możliwości zastosowania cech wyznaczanych z tekstury do klasyfikacji wykrytych, na obrazie mammograficznym, obszarów zainteresowania – jako obszarów niezmienionych lub zmienionych chorobowo. Cechy tekstury wyznaczono na podstawie histogramu, macierzy gradientu, macierzy długości pasm oraz macierzy zdarzeń. Klasyfikację przeprowadzono z wykorzystaniem klasyfikatora k-NN. W wyniku przeprowadzonych eksperymentów poprawnie rozpoznano wszystkie zmienione chorobowo próbki.
This paper presents an analysis of the possibility of using textural features for mammographic images classification. Textural features are calculated base on histogram, gradient matrix, run-length matrix, co-occurence matrix. Classification is based on k-NN classifier, the regions of interest can be classified as normal or abnormal. Results of some experiments are presented. All of abnormal regions were classified correctly.
Źródło:
Informatyka, Automatyka, Pomiary w Gospodarce i Ochronie Środowiska; 2013, 4; 10-13
2083-0157
2391-6761
Pojawia się w:
Informatyka, Automatyka, Pomiary w Gospodarce i Ochronie Środowiska
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Melanoma Skin Cancer and Nevus Mole Classification using Intensity Value Estimation with Convolutional Neural Network
Autorzy:
Ashafuddula
Islam, Rafiqul
Powiązania:
https://bibliotekanauki.pl/articles/27312851.pdf
Data publikacji:
2023
Wydawca:
Akademia Górniczo-Hutnicza im. Stanisława Staszica w Krakowie. Wydawnictwo AGH
Tematy:
melanoma detection
medical imaging
image classification
convolutional neuralnetwork
intensity value estimation
canny edge detection
Opis:
Melanoma skin cancer is one of the most dangerous and life-threatening cancer. Exposure to ultraviolet rays may damage the skin cell's DNA, which causes melanoma skin cancer. However, it is difficult to detect and classify melanoma and nevus mole at the immature stages. In this work, an automatic deep learning system is developed based on the intensity value estimation with a convolutional neural network model (CNN) to detect and classify melanoma and nevus mole more accurately. Since intensity levels are the most distinctive features for object or region of interest identification, the high-intensity pixel values are selected from the extracted lesion images. Incorporating those high-intensity features into the CNN improves the overall performance than the state-of-the-art methods for detecting melanoma skin cancer. To evaluate the system, we used 5-fold cross-validation. Experimental results show that a superior percentage of accuracy (92.58%), Sensitivity (93.76%), Specificity (91.56%), and Precision (90.68%) are achieved.
Źródło:
Computer Science; 2023, 24 (3); 277--296
1508-2806
2300-7036
Pojawia się w:
Computer Science
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Metody Rozpoznawania Wzorców Obrazów w Analizie Wskaźników Dermatoglificznych Zespołu Downa
Image pattern recognition methods in analysis of dermatoglyphic indices of Downs Syndrome
Autorzy:
Wojtowicz, H.
Wajs, W.
Powiązania:
https://bibliotekanauki.pl/articles/152598.pdf
Data publikacji:
2011
Wydawca:
Stowarzyszenie Inżynierów i Techników Mechaników Polskich
Tematy:
poprawianie jakości obrazu
filtry adaptacyjne
rozpoznawanie wzorców
maszyny wektorów wspierających
diagnostyka medyczna
image quality
enhancement
adaptive filters
pattern recognition
classification of impressions of hallucal area of sole
support vector machines
medical diagnostics
Opis:
Klasyfikacja odbitek wzorców w polu palucha na stopach jest jest jednym z zadań analizy dermatoglificznej wykonywanej przez antropologa do wykrywania wad genetycznych u noworodków. Artykuł opisuje zastosowanie metod przetwarzania obrazów i rozpoznawania wzorców do klasyfikacji obrazów odbitek wzorców w polu halukalnym stóp. Opisana została metoda klasyfikacji odbitek tych wzorców. Do poprawienia jakości obrazów zastosowano zabiegi poprawiania kontrastu obrazu, segmentacji tła oraz kontekstowej filtracji obrazu za pomocą krótkoczasowej transformaty Fouriera. Zaproponowano zastosowanie algorytmu opartego na rozkładzie piramidowym w wielu skalach do wyznaczenia kierunków pływów listewek odbitek. W artykule opisane i przedyskutowane zostały modele klasyfikatorów obrazów odbitek wzorców w polu palucha na stopach. Klasyfikatory te stanowią część automatycznego systemu diagnostycznego służącego do badań przesiewowych na obecności trisomii 21 (zespołu Downa). System wspomaga pracę antropologa poprzez automatyczne przetwarzanie i wykrywanie własności wskazujących na obecność wad genetycznych. Obrazy dermatoglifów są wstępnie przetwarzane przed procesem klasyfikacji w celu wydobycia wektorów własności analizowanych przez Maszyny Wektorów Wspierających. Funkcje jądrowe oparte na radialnych funkcjach bazowych zostały użyte w procesie indukcji wieloklasowego systemu Maszyn Wektorów Wspierających generowanego według algorytmu 'jeden przeciwko jednemu'. Badania wykonane na danych pochodzących z Collegium Medicum Uniwersytetu Jagielońskiego w Krakowie, pokazują efektywność zaproponowanego podejścia w poprawianiu jakości obrazów odbitek wzorców w polu palucha na stopach i ich klasyfikacji.
Classification of patterns of hallucal area of sole is one of the tasks of dermatoglyphic analysis. The paper describes application of image processing and pattern recognition methods to classification of impressions of hallucal area of sole. Contrast enhancement, segmentation and contextual filtration techniques are used to enhance quality of the images. Use of an algorithm based on multi-scale pyramid decomposition of an image is proposed for ridge orientation calculation. Hallucal area pattern classifiers, which are part of an automatic system for rapid screen diagnosing of trisomy 21 (Down's Syndrome) in infants, are created and discussed. The system is a tool supporting medical decision by automatic processing of dermatoglyphic prints and detecting features indicating presence of genetic disorder. Images of dermatoglyphic prints are pre-processed before the classification stage to extract features analysed by Support Vector Machines algorithm. RBF kernel type is used in the training of SVM multi-class systems generated with one-vs-one scheme. Experiments conducted on the database of Collegium Medicum of the Jagiellonian University in Cracow show effectiveness of the proposed approach to classification of infants' fingerprints.
Źródło:
Pomiary Automatyka Kontrola; 2011, R. 57, nr 9, 9; 1000-1004
0032-4140
Pojawia się w:
Pomiary Automatyka Kontrola
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-6 z 6

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies