- Tytuł:
-
Nanomateriały w spektrometrii mas z laserową desorpcją/jonizacją wspomaganą powierzchnią
Nanomaterials applied in surface-assisted laser desorption/ionization mass spectrometry - Autorzy:
- Arendowski, Adrian
- Powiązania:
- https://bibliotekanauki.pl/articles/2200434.pdf
- Data publikacji:
- 2022
- Wydawca:
- Polskie Towarzystwo Chemiczne
- Tematy:
-
laserowa desorpcja/jonizacja
metody bezmatrycowe
nanocząstki
SALDI
spektrometria mas
laser desorption/ionization
mass spectrometry
matrix-free methods
nanoparticles - Opis:
- Laser desorption/ionization (LDI) is one of the most popular ionization techniques currently used in mass spectrometry (MS). This technique is most commonly used in a variant of matrix-assisted laser desorption/ionization (MALDI), which uses low molecular weight organic acid mixed with the sample to support the ionization process. However, this approach has some shortcomings such as: high chemical background in the spectral region below m/z 700 making it difficult to analyze compounds giving signals in this spectral region, inhomogeneous co-crystallization of analyte and matrix leading to the formation of so-called "sweet spots", i.e. inhomogeneous distribution of analyte in the crystallizing matrix. For these reasons, increasing research attention is focused on the possibilities offered by the use of matrix-free systems based on nanostructures in laser methods, which are referred to as surface-assisted laser desorption/ionization (SALDI). The use of nanostructures in LDI MS has made it possible to analyze low molecular compounds, often at very low concentrations, without the presence of matrix-derived chemical background, contributing to more applications of the LDI MS method. This work describes what the SALDI technique is and reviews the nanomaterials used in different variations of the approach. Among the described materials used in SALDI there are nanomaterials based on carbon and silicon, including the DIOS method, as well as techniques based on nanoparticles of gold, silver, platinum and titanium oxide. For each method, application examples are given for the detection of different classes of chemical compounds, often also in complex biological mixtures.
- Źródło:
-
Wiadomości Chemiczne; 2022, 76, 9-10; 735--754
0043-5104
2300-0295 - Pojawia się w:
- Wiadomości Chemiczne
- Dostawca treści:
- Biblioteka Nauki