- Tytuł:
- Matrix Quadratic Equations, Column/row Reduced Factorizations and an Inertia Theorem for Matrix Polynomials
- Autorzy:
-
Karelin, I.
Lerer, L. - Powiązania:
- https://bibliotekanauki.pl/articles/908122.pdf
- Data publikacji:
- 2001
- Wydawca:
- Uniwersytet Zielonogórski. Oficyna Wydawnicza
- Tematy:
-
macierz
równanie różniczkowe Riccatiego
matrix quadratic equations
Bezoutians
inertia
column (row) reduced polynomials
factorization
algebraic Riccati equation
extremal solutions - Opis:
- It is shown that a certain Bezout operator provides a bijective correspondence between the solutions of the matrix quadratic equation and factorizatons of a certain matrix polynomial G(lambda) (which is a specification of a Popov-type function) into a product of row and column reduced polynomials. Special attention is paid to the symmetric case, i.e. to the Algebraic Riccati Equation. In particular, it is shown that extremal solutions of such equations correspond to spectral factorizations of G(lambda). The proof of these results depends heavily on a new inertia theorem for matrix polynomials which is also one of the main results in this paper.
- Źródło:
-
International Journal of Applied Mathematics and Computer Science; 2001, 11, 6; 1285-1310
1641-876X
2083-8492 - Pojawia się w:
- International Journal of Applied Mathematics and Computer Science
- Dostawca treści:
- Biblioteka Nauki