Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "maszyna uczenia ekstremalnego" wg kryterium: Temat


Wyświetlanie 1-2 z 2
Tytuł:
Assessing the suitability of extreme learning machines (ELM) for groundwater level prediction
Ocena zdolności ekstremalnych maszyn uczących (ELM) do przewidywania poziomu wód gruntowych
Autorzy:
Yadav, B.
Ch, S.
Mathur, S.
Adamowski, J.
Powiązania:
https://bibliotekanauki.pl/articles/293096.pdf
Data publikacji:
2017
Wydawca:
Instytut Technologiczno-Przyrodniczy
Tematy:
extreme learning machine (ELM)
forecasting
groundwater level
support vector machine (SVM)
water resource management
maszyna uczenia ekstremalnego (ELM)
maszyna wektorów nośnych SVM
poziom wód gruntowych
prognozowanie
zarządzanie zasobami wodnymi
Opis:
Fluctuation of groundwater levels around the world is an important theme in hydrological research. Rising water demand, faulty irrigation practices, mismanagement of soil and uncontrolled exploitation of aquifers are some of the reasons why groundwater levels are fluctuating. In order to effectively manage groundwater resources, it is important to have accurate readings and forecasts of groundwater levels. Due to the uncertain and complex nature of groundwater systems, the development of soft computing techniques (data-driven models) in the field of hydrology has significant potential. This study employs two soft computing techniques, namely, extreme learning machine (ELM) and support vector machine (SVM) to forecast groundwater levels at two observation wells located in Canada. A monthly data set of eight years from 2006 to 2014 consisting of both hydrological and meteorological parameters (rainfall, temperature, evapotranspiration and groundwater level) was used for the comparative study of the models. These variables were used in various combinations for univariate and multivariate analysis of the models. The study demonstrates that the proposed ELM model has better forecasting ability compared to the SVM model for monthly groundwater level forecasting.
Na całym świecie fluktuacje poziomów wód gruntowych stanowią ważny temat badań hydrologicznych. Rosnące potrzeby wodne, błędne praktyki irygacyjne, niewłaściwa gospodarka glebowa i niekontrolowana eksploatacja poziomów wodonośnych są powodami, dla których poziom wód gruntowych podlega fluktuacjom. Dla skutecznego zarządzania zasobami wód gruntowych istotne jest dysponowanie dokładnymi zapiskami i zdolność prognozowania poziomu tych wód. Rozwój technik komputerowych (modele wykorzystujące dane) w dziedzinie hydrologii ma istotny potencjał z powodu niepewnego i złożonego charakteru systemów wód gruntowych. W prezentowanych badaniach wykorzystano dwie techniki komputerowe: maszynę uczenia ekstremalnego (ELM) i maszynę wektorów nośnych (SVM – ang. support vector machine) do przewidywania poziomów wód gruntowych w dwóch studzienkach obserwacyjnych w Kanadzie. Do porównawczych badań modeli wykorzystano zestaw danych miesięcznych z ośmiu lat (2006–2014), składający się z danych hydrologicznych i meteorologicznych (opady, temperatura, ewapotranspiracja, poziom wody). Wymienione zmienne zastosowano w rozmaitych kombinacjach do jedno- i wieloparametrycznej analizy modeli. Wyniki dowodzą, że model ELM ma lepsze zdolności przewidywania miesięcznych poziomów wód gruntowych w porównaniu z modelem SVM.
Źródło:
Journal of Water and Land Development; 2017, 32; 103-112
1429-7426
2083-4535
Pojawia się w:
Journal of Water and Land Development
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
A fast neural network learning algorithm with approximate singular value decomposition
Autorzy:
Jankowski, Norbert
Linowiecki, Rafał
Powiązania:
https://bibliotekanauki.pl/articles/330870.pdf
Data publikacji:
2019
Wydawca:
Uniwersytet Zielonogórski. Oficyna Wydawnicza
Tematy:
Moore–Penrose pseudoinverse
radial basis function network
extreme learning machine
kernel method
machine learning
singular value decomposition
deep extreme learning
principal component analysis
pseudoodwrotność Moore–Penrose
radialna funkcja bazowa
maszyna uczenia ekstremalnego
uczenie maszynowe
analiza składników głównych
Opis:
The learning of neural networks is becoming more and more important. Researchers have constructed dozens of learning algorithms, but it is still necessary to develop faster, more flexible, or more accurate learning algorithms. With fast learning we can examine more learning scenarios for a given problem, especially in the case of meta-learning. In this article we focus on the construction of a much faster learning algorithm and its modifications, especially for nonlinear versions of neural networks. The main idea of this algorithm lies in the usage of fast approximation of the Moore–Penrose pseudo-inverse matrix. The complexity of the original singular value decomposition algorithm is O(mn2). We consider algorithms with a complexity of O(mnl), where l < n and l is often significantly smaller than n. Such learning algorithms can be applied to the learning of radial basis function networks, extreme learning machines or deep ELMs, principal component analysis or even missing data imputation.
Źródło:
International Journal of Applied Mathematics and Computer Science; 2019, 29, 3; 581-594
1641-876X
2083-8492
Pojawia się w:
International Journal of Applied Mathematics and Computer Science
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-2 z 2

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies