Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "mapping/ classification" wg kryterium: Temat


Wyświetlanie 1-5 z 5
Tytuł:
Mapping vegetation communities of the Karkonosze National Park using APEX hyperspectral data and Support Vector Machines
Autorzy:
Marcinkowska, Adriana
Zagajewski, Bogdan
Ochtyra, Adrian
Jarocińska, Anna
Raczko, Edwin
Kupková, Lucie
Stych, Premysl
Meuleman, Koen
Powiązania:
https://bibliotekanauki.pl/articles/2037399.pdf
Data publikacji:
2014-06-25
Wydawca:
Uniwersytet Warszawski. Wydział Geografii i Studiów Regionalnych
Tematy:
Hyperspectral data
APEX
Karkonosze National Park
mapping/ classification
vegetation communities
Opis:
This research aims to discover the potential of hyperspectral remote sensing data for mapping mountain vegetation ecosystems. First, the importance of mountain ecosystems to the global system should be stressed due to mountainous ecosystems forming a very sensitive indicator of global climate change. Furthermore, a variety of biotic and abiotic factors influence the spatial distribution of vegetation in the mountains, producing a diverse mosaic leading to high biodiversity. The research area covers the Szrenica Mount region on the border between Poland and the Czech Republic - the most important part of the Western Karkonosze and one of the main areas in the Karkonosze National Park (M&B Reserve of the UNESCO). The APEX hyperspectral data that was classified in this study was acquired on 10th September 2012 by the German Aerospace Center (DLR) in the framework of the EUFAR HyMountEcos project. This airborne scanner is a 288-channel imaging spectrometer operating in the wavelength range 0.4-2.5 μm. For reference patterns of forest and non-forest vegetation, maps (provided by the Polish Karkonosze National Park) were chosen. Terrain recognition was based on field walks with a Trimble GeoXT GPS receiver. It allowed test and validation dominant polygons of 15 classes of vegetation communities to be selected, which were used in the Support Vector Machines (SVM) classification. The SVM classifier is a type of machine used for pattern recognition. The result is a post classification map with statistics (total, user, producer accuracies, kappa coefficient and error matrix). Assessment of the statistics shows that almost all the classes were properly recognised, excluding the fern community. The overall classification accuracy is 79.13% and the kappa coefficient is 0.77. This shows that hyperspectral images and remote sensing methods can be support tools for the identification of the dominant plant communities of mountain areas.
Źródło:
Miscellanea Geographica. Regional Studies on Development; 2014, 18, 2; 23-29
0867-6046
2084-6118
Pojawia się w:
Miscellanea Geographica. Regional Studies on Development
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Semantic Place Labeling Method
Autorzy:
Siemiatkowska, B.
Harasymowicz-Boggio, B.
Chechlinski, Ł.
Powiązania:
https://bibliotekanauki.pl/articles/384729.pdf
Data publikacji:
2015
Wydawca:
Sieć Badawcza Łukasiewicz - Przemysłowy Instytut Automatyki i Pomiarów
Tematy:
mapping
classification
Dempster-Shafer theory
Opis:
The paper presents a method of semantic localization of a mobile robot. The robot is equipped with a Sick laser finder and a Kinect sensor. The simplest source of informa tion about an environment is a scan obtained by the range sensor. The polygonal approximation of an observed area is performed. The shape of the polygon allows us to distinguish corridors from other places using a simple rule based system. During the next step rooms are classified based on objects which have been recognized. Each object votes for a set of classes of rooms. In a real environment we deal with uncertainty. Usually probabilistic theory is used to solve the problem but it is not capable of capturing subjective uncertainty. In our approach instead of the classic Bayesian method we proposed to perform classification using Dempster-Shafer theory (DST), which can be regarded as a generalization of the Bayesian theory and is able to deal with subjective uncertainty. The experiments performed in real office environment proved the efficiency of our approach.
Źródło:
Journal of Automation Mobile Robotics and Intelligent Systems; 2015, 9, 1; 28-33
1897-8649
2080-2145
Pojawia się w:
Journal of Automation Mobile Robotics and Intelligent Systems
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Selected statistical problems in spatial evaluation of Rn related variables
Autorzy:
Friedmann, H.
Bossew, P.
Powiązania:
https://bibliotekanauki.pl/articles/148745.pdf
Data publikacji:
2010
Wydawca:
Instytut Chemii i Techniki Jądrowej
Tematy:
radon
mapping
geostatistics
uncertainties
classification
Opis:
Since indoor radon is considered a potential hazard to health, Rn prevention and mitigation are necessary in certain areas. In this article we address the issues of mapping support and resolution, and conceptually discuss two common ways of generating maps from given information. Further, a short overview is given on the sources of uncertainties which are inevitably associated to every estimate and how to treat them. Finally, some possibilities of generating classified risk indices are outlined, since it is most often necessary to classify regions by estimated hazard.
Źródło:
Nukleonika; 2010, 55, 4; 429-432
0029-5922
1508-5791
Pojawia się w:
Nukleonika
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
The Application of Mobile Robots for Building Safety Control
Autorzy:
Siemiatkowska, B.
Hrasymowicz-Boggio, B.
Wisniowski, M.
Powiązania:
https://bibliotekanauki.pl/articles/950822.pdf
Data publikacji:
2016
Wydawca:
Sieć Badawcza Łukasiewicz - Przemysłowy Instytut Automatyki i Pomiarów
Tematy:
mapping
classification
control
mobile robot
safety
Opis:
In this article we propose the application of service mobile robots for control of building safety parameters. Indoor mobile robots are becoming a reality and their availability and applications are expected to grow rapidly in the near future. Such robots are usually equipped with cameras and laser range finders, which could be used to detect hazardous situations in their operating environment, such as evacuation route obstructions, emergency sign occlusions or accumulation of dangerous materials. We demonstrate how these safety-related augmentations of a mobile robot system can be achieved with few additional resources and validate experimentally the concept using an indoor robot for emergency sign and evacuation route control.
Źródło:
Journal of Automation Mobile Robotics and Intelligent Systems; 2016, 10, 2; 9-14
1897-8649
2080-2145
Pojawia się w:
Journal of Automation Mobile Robotics and Intelligent Systems
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
An Accuracy Analysis Comparison of Supervised Classification Methods for Mapping Land Cover Using Sentinel 2 Images in the Al‑Hawizeh Marsh Area, Southern Iraq
Autorzy:
Alwan, Imzahim A.
Aziz, Nadia A.
Powiązania:
https://bibliotekanauki.pl/articles/1838006.pdf
Data publikacji:
2021
Wydawca:
Akademia Górniczo-Hutnicza im. Stanisława Staszica w Krakowie. Wydawnictwo AGH
Tematy:
land cover mapping
Sentinel 2
supervised classification
maximum likelihood
Support Vector Machine (SVM)
confusion matrix
Opis:
Land cover mapping of marshland areas from satellite images data is not a simple process, due to the similarity of the spectral characteristics of the land cover. This leads to challenges being encountered with some land covers classes, especially in wetlands classes. In this study, satellite images from the Sentinel 2B by ESA (European Space Agency) were used to classify the land cover of Al Hawizeh marsh/Iraq Iran border. Three classification methods were used aimed at comparing their accuracy, using multispectral satellite images with a spatial resolution of 10 m. The classification process was performed using three different algorithms, namely: Maximum Likelihood Classification (MLC), Artificial Neural Networks (ANN), and Support Vector Machine (SVM). The classification algorithms were carried out using ENVI 5.1 software to detect six land cover classes: deep water marsh, shallow water marsh, marsh vegetation (aquatic vegetation), urban area (built up area), agriculture area, and barren soil. The results showed that the MLC method applied to Sentinel 2B images provides a higher overall accuracy and the kappa coefficient compared to the ANN and SVM methods. Overall accuracy values for MLC, ANN, and SVM methods were 85.32%, 70.64%, and 77.01% respectively.
Źródło:
Geomatics and Environmental Engineering; 2021, 15, 1; 5-21
1898-1135
Pojawia się w:
Geomatics and Environmental Engineering
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-5 z 5

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies