Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "mapa cech" wg kryterium: Temat


Wyświetlanie 1-2 z 2
Tytuł:
Gearbox faults identification using vibration signal analysis and artificial intelligence methods
Identyfikacja uszkodzeń skrzyni biegów za pomocą analizy sygnału drgań oraz metod sztucznej inteligencji
Autorzy:
Zuber, N.
Bajrić, R.
Šostakov, R.
Powiązania:
https://bibliotekanauki.pl/articles/301941.pdf
Data publikacji:
2014
Wydawca:
Polska Akademia Nauk. Polskie Naukowo-Techniczne Towarzystwo Eksploatacyjne PAN
Tematy:
drgania skrzyni biegów
uszkodzenie skrzyni biegów
sztuczna sieć neuronowa
samoorganizująca się mapa cech
gearbox vibration
gear fault
artificial neural network
self-organized feature map
Opis:
Artykuł omawia zastosowanie sztucznych sieci neuronowych opartych na cechach oraz analizy drgań do celów automatycznej identyfikacji uszkodzeń skrzyni biegów. Prace eksperymentalne przeprowadzono na specjalnie zaprojektowanym stanowisku badawczym, a uzyskane wyniki zweryfikowano na przykładzie przekładni przenośnika taśmowego koparki wielonaczyniowej SRs 1300 wykorzystywanej w kopalni odkrywkowej. Cechy drgań w dziedzinie czasu i częstotliwości są wykorzystywane jako wejścia klasyfikatorów uszkodzeń. Kompletny zbiór proponowanych cech drgań wykorzystano jako wejścia samoorganizujących się map cech, a na podstawie wyników opracowano zredukowany zbiór cech drgań, które wykorzystano jako wejścia do nadzorowanych sztucznych sieci neuronowych. Zbadano dwa typowe uszkodzenia przekładni : zużycie przekładni oraz brakujące zęby przekładni. Uzyskane wyniki wskazują, że proponowany zbiór cech drgań umożliwia niezawodną identyfikację rozwijających się uszkodzeń w układach przenoszenia napędu z kołami zębatymi.
The paper addresses the implementation of feature based artificial neural networks and vibration analysis for the purpose of automated gearbox faults identification. Experimental work has been conducted on a specially designed test rig and the obtained results are validated on a belt conveyor gearbox from a mine strip bucket wheel excavator SRs 1300. Frequency and time domain vibration features are used as inputs to fault classifiers. A complete set of proposed vibration features are used as inputs for selforganized feature maps and based on the results a reduced set of vibration features are used as inputs for supervised artificial neural networks. Two typical gear failures were tested: worn gears and missing teeth. The achieved results show that proposed set of vibration features enables reliable identification of developing faults in power transmission systems with toothed gears.
Źródło:
Eksploatacja i Niezawodność; 2014, 16, 1; 61-65
1507-2711
Pojawia się w:
Eksploatacja i Niezawodność
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Zastosowanie samoorganizujących się map cech w diagnostyce silników o zapłonie samoczynnym
Application of self-organizing maps of characteristics in the diagnostics of self-ignition engines
Autorzy:
Klimkiewicz, M.
Powiązania:
https://bibliotekanauki.pl/articles/287341.pdf
Data publikacji:
2008
Wydawca:
Polskie Towarzystwo Inżynierii Rolniczej
Tematy:
silnik o zapłonie samoczynnym
diagnostyka
mapa cech
sieć Kohonena
diesel engine
diagnostics
self-organizing map
Kohonen map
Opis:
Wykorzystano właściwości samoorganizujących się map cech w wykrywaniu uszkodzeń silników z zapłonem samoczynnym. Zbudowano model, w którym zmiennymi wejściowymi są symptomy zaobserwowane przez użytkownika wskazujące na niewłaściwą pracę silnika oraz sprawdzenia i pomiary wykonane przez mechanika. Za pomocą mapy topologicznej zlokalizowano podobne skupienia przypadków. Neuronom radialnym mapy nadano etykiety zgodne z nazwami mogących się pojawić usterek.
The researchers made use of self-organizing properties of maps of characteristics in detecting defects of self-ignition engines. A model was developed with the following input variables: the symptoms observed by user that indicate abnormal engine work, and checks and measurements carried out by a mechanic. Similar concentrations of clusters were located using a topological map. Radial neurons in the map were marked with labels consistent with names of defects, which may possibly occur.
Źródło:
Inżynieria Rolnicza; 2008, R. 12, nr 7(105), 7(105); 101-108
1429-7264
Pojawia się w:
Inżynieria Rolnicza
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-2 z 2

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies