Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "machining industry" wg kryterium: Temat


Wyświetlanie 1-4 z 4
Tytuł:
Implementation of an integrated management information system to a sample machine industry enterprise
Implementacja zintegrowanego systemu informatycznego w przykładowym przedsiębiorstwie przemysłu maszynowego
Autorzy:
Gunia, G.
Powiązania:
https://bibliotekanauki.pl/articles/340023.pdf
Data publikacji:
2014
Wydawca:
Polskie Towarzystwo Zarządzania Produkcją
Tematy:
integrated information systems
production process
machining industry
zintegrowane systemy informatyczne
proces produkcyjny
przemysł maszynowy
Opis:
The article briefly characterises a model of implementing integrated information systems. Next, it describes realization effects of subsequent stages of preimplementation operations in a sample enterprise from machine industry: starting from organisational analysis of the enterprise, through a model of production process realization and a model of integrated information system, ending on the schedule of implementation realization. Finally, the effects of integrated management information system implementation and current directions of system development in an enterprise are presented.
W artykule krótko scharakteryzowano model implementacji zintegrowanych systemów informatycznych. Następnie opisano wyniki realizacji kolejnych etapów prac przedwdrożeniowych w przykładowym przedsiębiorstwie przemysłu maszynowego: począwszy od analizy organizacyjnej przedsiębiorstwa, poprzez model realizacji procesu produkcyjnego i model ZSI, na harmonogramie realizacji wdrożenia kończąc. Na zakończenie przedstawiono efekty wdrożenia ZSI oraz bieżące kierunki rozwoju systemu w przedsiębiorstwie.
Źródło:
Zarządzanie Przedsiębiorstwem; 2014, 17, 3; 16-26
1643-4773
Pojawia się w:
Zarządzanie Przedsiębiorstwem
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Smart tool-related faults monitoring system using process simulation-based machine learning algorithms
Autorzy:
Ebrahimi Araghizad, Arash
Tehranizadeh, Faraz
Kilic, Kemal
Budak, Erhan
Powiązania:
https://bibliotekanauki.pl/articles/28407322.pdf
Data publikacji:
2023
Wydawca:
Wrocławska Rada Federacji Stowarzyszeń Naukowo-Technicznych
Tematy:
Industry 4.0
machining
machine learning
monitoring
Opis:
In this paper a novel approach for monitoring tool-related faults in milling processes by utilizing process simulation-based machine learning algorithms, specifically Random Forest algorithms, for fault detection is presented. In order to train machine learning models in tool condition monitoring, laboratory tests have traditionally been required. This method eliminates the need for costly, time-consuming laboratory tests. The training process has been simplified by utilizing analytical simulation data and provides a more cost-effective solution by leveraging analytical simulation data. Based on the results of this study, the proposed approach has been demonstrated to be 94% accurate at predicting tool-related faults, demonstrating its potential to serve as an efficient and viable alternative to conventional methods. These findings have been supported by actual measurement data, with a notable accuracy rate of 93% in the predictions. Furthermore, the results indicate that process simulation-based machine learning algorithms will have a significant impact on the tools condition monitoring and the efficiency of manufacturing processes more generally. To further enhance the capabilities of the proposed fault monitoring system, process-related and machine-related faults will be investigated in future research. Several machine learning algorithms will be explored as well as additional data sources will be integrated in order to enhance the accuracy and reliability of fault detection.
Źródło:
Journal of Machine Engineering; 2023, 23, 4; 18--32
1895-7595
2391-8071
Pojawia się w:
Journal of Machine Engineering
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Applications of metallic composites in the automotive industry and their machining by the EDM
Autorzy:
Bialo, D.
Peronczyk, J.
Skalski, A.
Powiązania:
https://bibliotekanauki.pl/articles/950159.pdf
Data publikacji:
2018
Wydawca:
Instytut Techniczny Wojsk Lotniczych
Tematy:
aluminium matrix composites
automotive industry
electro discharge machining
EDM productivity
surface roughness
Opis:
The article deals with the problems of application of aluminium matrix composites in car industry and electro discharge machining (EDM) of selected composites, which are used for engine pistons. Composites with Al+20%Si+3%Cu+1%Mg matrix were manufacturing by the powder metallurgy route in the process of cold compaction, degassing and hot extrusion. As the reinforcing phase Al2O3 particles with average size of 3, 9, 23 and 53 μm were used. Samples had constant reinforcing phase 5 and 10 % by volume. Electro discharge machining was performed using machine equipped with RLC generator. Four modes of energy of single discharge Ei in the range of 0.165 to 2.268 mJ were applied. EDM was carried out in a free – system. The main parameters determined after machining were volumetric productivity Vw (mm3 /min) and roughness of the machined surface expressed as Ra. It was shown that energy of single discharge influence mainly on the EDM process running. The higher was Ei, the higher were value of Vw. Increasing particle granularity from 3 to 53 μm caused decreasing in process productivity 13 to 19%. Ei affects the surface roughness during EDM. The value of Ra increases as this energy increases. When the size of reinforcing particles is growing, roughness parameter Ra is also growing.
Źródło:
Journal of KONES; 2018, 25, 1; 15-23
1231-4005
2354-0133
Pojawia się w:
Journal of KONES
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Vibration signal as a support for the processes production management in enterprises of the furniture industry
Autorzy:
Górnicka, Dorota
Szwedzka, Katarzyna
Powiązania:
https://bibliotekanauki.pl/articles/127975.pdf
Data publikacji:
2019
Wydawca:
Politechnika Poznańska. Instytut Mechaniki Stosowanej
Tematy:
machine vibration
management
machining centre
furniture industry
drgania maszyn
zarządzanie
centrum obróbkowe
przemysł meblarski
Opis:
Activities of maintenance services cover not only the performance of ongoing repairs, but, above all, the prevention of failures and downtime. Adopting preventive measures to maintain machinery and equipment in manufacturing enterprises has a significant impact on the timely execution of orders, which is why monitoring the state of the machine park is becoming common in robotic manufacturing enterprises. Currently, the most frequently observed diagnostic parameters relate to machine vibrations. Information on exceeding the permissible thresholds allows for appropriate reaction of maintenance services aimed at minimizing unplanned downtime. The diagnostic aspect is beyond dispute here. However, there is a question whether the vibration signal can additionally be a carrier of information about the production process - information that can be used at the stage of technological process assessment, or even at the stage of process control? Searching for the answer to this question, one of machining centres for mass production of glued panels in the furniture industry was analyzed. Information obtained from maintenance services was confronted with information from standard vibration measurements. The article is an attempt to answer the question of how to properly use at the management stage knowledge of vibration signals generated by motors mounted on the production line.
Źródło:
Vibrations in Physical Systems; 2019, 30, 2; 1-8
0860-6897
Pojawia się w:
Vibrations in Physical Systems
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-4 z 4

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies