Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "low grade heat" wg kryterium: Temat


Wyświetlanie 1-5 z 5
Tytuł:
Analiz suscestvuuscich ustrojstw i sistem otbora nizkopotencial’noj teploty stocnych vod v sisteme kanalizacii
Analysis of existing devices and systems for utilization of low-grade heat waste sewage water
Autorzy:
Obidnyk, A.
Malkin, E.
Jacenko, A.
Powiązania:
https://bibliotekanauki.pl/articles/2065301.pdf
Data publikacji:
2015
Wydawca:
Politechnika Częstochowska
Tematy:
ścieki
ciepła woda
pompy ciepła
odzysk ciepła
waste water
hot water
low grade heat
heat pumps
heat recovery
Opis:
Odnim iz vozmoznych istocnikov nizkopotencial’noj teploty dla sistem teplosnabzenia mogut byt’ stocnye vody sistem kanalizacii. V stat’e vypolnen obzor i sravnenie suscestvuuscich ustrojstw i sistem dla utilizacii teploty stocnych vod vo vnutrennich i naruznych sistemach kanalizacii, v castnosti predstavleny preimuscestva i nedostatki ispol’zovania ustrojstv i sistem.
One possible source of low-grade heat for heating systems is sewerage waste water. The article presents the review and the comparison of existing devices and systems for heat recovery of waste water in the interior and exterior sewer systems, in particular, the advantages and disadvantages of the use of devices and systems.
Źródło:
Budownictwo o Zoptymalizowanym Potencjale Energetycznym; 2015, 1 (15); 143--151
2299-8535
2544-963X
Pojawia się w:
Budownictwo o Zoptymalizowanym Potencjale Energetycznym
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Performance optimization of organic Rankine cycles for waste heat recovery for a large diesel engine
Autorzy:
Ma, Z.
Wu, J.
Zhang, Y.
Powiązania:
https://bibliotekanauki.pl/articles/240064.pdf
Data publikacji:
2018
Wydawca:
Polska Akademia Nauk. Czytelnia Czasopism PAN
Tematy:
low grade waste heat
organic rankine cycle
thermodynamic optimization
thermoeconomic optimization
intelligent marine diesel engine
organiczny obieg Rankine'a
optymalizacja termodynamiczna
optymalizacja termoekonomiczna
Opis:
In order to recover the low grade waste heat and increase system fuel economy for main engine 10S90ME-C9.2-TII(part load, exhaust gas bypass) installed on a 10000 TEU container ship, a non-cogeneration and single-pressure type of waste heat recovery system based on organic Rankine cycle is proposed. Organic compound candidates appropriate to the system are analyzed and selected. Thermodynamic model of the whole system and thermoeconomic optimization are performed. The saturated organic compound vapor mass flow rate, net electric power output, pinch point, thermal efficiency and exergy efficiency varied with different evaporating temperature are thermodynamically analyzed. The results of thermodynamic and thermoeconomic optimization indicate that the most appropriate organic compound candidate is R141b due to its highest exergy efficiency, biggest unit cost benefit and shortest payback time.
Źródło:
Archives of Thermodynamics; 2018, 39, 1; 3-23
1231-0956
2083-6023
Pojawia się w:
Archives of Thermodynamics
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Experience in modelling of a single-stage silica gel-water adsorption chiller
Autorzy:
Krzywański, J.
Szyc, M.
Nowak, W.
Kolenda, Z.
Powiązania:
https://bibliotekanauki.pl/articles/298154.pdf
Data publikacji:
2016
Wydawca:
Uniwersytet Warmińsko-Mazurski w Olsztynie
Tematy:
low grade thermal energy
waste heat recovery
adsorption chillers
silica gel
coefficient of performance
cooling capacity
Opis:
Heat utilization for cooling capacity production is nowadays a desirable challenge in several industrial applications. There are lots of industrial processes with low parameters of heat generated as by-product, which utilization is very important to improve theirs total energy efficiency. Waste heat driven chillers seem to be great competitors for mechanical chillers. Among them special attention should be paid to adsorption chillers, since they can be powered with low – temperature heat sources. The paper presents a model of a single-stage adsorption chiller with silica gel as adsorbent and water, acting as a refrigerant. The performed model allows to predict the behaviour of the adsorption chiller, among others the main energy efficiency factors, such as coefficient of performance (COP) and cooling capacity (CC) for different working conditions.
Źródło:
Technical Sciences / University of Warmia and Mazury in Olsztyn; 2016, 19(4); 367-386
1505-4675
2083-4527
Pojawia się w:
Technical Sciences / University of Warmia and Mazury in Olsztyn
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Adsorption chiller in a combined heating and cooling system: simulation and optimization by neural networks
Autorzy:
Krzywanski, Jarosław
Sztekler, Karol
Bugaj, Marcin
Kalawa, Wojciech
Grabowska, Karolina
Chaja, Patryk Robert
Sosnowski, Marcin
Nowak, Wojciech
Mika, Łukasz
Bykuć, Sebastian
Powiązania:
https://bibliotekanauki.pl/articles/2173577.pdf
Data publikacji:
2021
Wydawca:
Polska Akademia Nauk. Czytelnia Czasopism PAN
Tematy:
adsorption heat pump
polygeneration
cooling capacity
low grade thermal energy
artificial neural networks
soft computing
absorpcyjna pompa ciepła
poligeneracja
wydajność chłodnicza
energia cieplna niskiej jakości
sztuczne sieci neuronowe
przetwarzanie miękkie
Opis:
Adsorption cooling and desalination technologies have recently received more attention. Adsorption chillers, using eco-friendly refrigerants, provide promising abilities for low-grade waste heat recovery and utilization, especially renewable and waste heat of the near ambient temperature. However, due to the low coefficient of performance (COP) and cooling capacity (CC) of the chillers, they have not been widely commercialized. Although operating in combined heating and cooling (HC) systems, adsorption chillers allow more efficient conversion and management of low-grade sources of thermal energy, their operation is still not sufficiently recognized, and the improvement of their performance is still a challenging task. The paper introduces an artificial intelligence (AI) approach for the optimization study of a two-bed adsorption chiller operating in an existing combined HC system, driven by low-temperature heat from cogeneration. Artificial neural networks are employed to develop a model that allows estimating the behavior of the chiller. Two crucial energy efficiency and performance indicators of the adsorption chiller, i.e., CC and the COP, are examined during the study for different operating sceneries and a wide range of operating conditions. Thus this work provides useful guidance for the operating conditions of the adsorption chiller integrated into the HC system. For the considered range of input parameters, the highest CC and COP are equal to 12.7 and 0.65 kW, respectively. The developed model, based on the neurocomputing approach, constitutes an easy-to-use and powerful optimization tool for the adsorption chiller operating in the complex HC system.
Źródło:
Bulletin of the Polish Academy of Sciences. Technical Sciences; 2021, 69, 3; art. no. e137054
0239-7528
Pojawia się w:
Bulletin of the Polish Academy of Sciences. Technical Sciences
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Adsorption chiller in a combined heating and cooling system: simulation and optimization by neural networks
Autorzy:
Krzywanski, Jarosław
Sztekler, Karol
Bugaj, Marcin
Kalawa, Wojciech
Grabowska, Karolina
Chaja, Patryk Robert
Sosnowski, Marcin
Nowak, Wojciech
Mika, Łukasz
Bykuć, Sebastian
Powiązania:
https://bibliotekanauki.pl/articles/2128167.pdf
Data publikacji:
2021
Wydawca:
Polska Akademia Nauk. Czytelnia Czasopism PAN
Tematy:
adsorption heat pump
polygeneration
cooling capacity
low grade thermal energy
artificial neural networks
soft computing
absorpcyjna pompa ciepła
poligeneracja
wydajność chłodnicza
energia cieplna niskiej jakości
sztuczne sieci neuronowe
przetwarzanie miękkie
Opis:
Adsorption cooling and desalination technologies have recently received more attention. Adsorption chillers, using eco-friendly refrigerants, provide promising abilities for low-grade waste heat recovery and utilization, especially renewable and waste heat of the near ambient temperature. However, due to the low coefficient of performance (COP) and cooling capacity (CC) of the chillers, they have not been widely commercialized. Although operating in combined heating and cooling (HC) systems, adsorption chillers allow more efficient conversion and management of low-grade sources of thermal energy, their operation is still not sufficiently recognized, and the improvement of their performance is still a challenging task. The paper introduces an artificial intelligence (AI) approach for the optimization study of a two-bed adsorption chiller operating in an existing combined HC system, driven by low-temperature heat from cogeneration. Artificial neural networks are employed to develop a model that allows estimating the behavior of the chiller. Two crucial energy efficiency and performance indicators of the adsorption chiller, i.e., CC and the COP, are examined during the study for different operating sceneries and a wide range of operating conditions. Thus this work provides useful guidance for the operating conditions of the adsorption chiller integrated into the HC system. For the considered range of input parameters, the highest CC and COP are equal to 12.7 and 0.65 kW, respectively. The developed model, based on the neurocomputing approach, constitutes an easy-to-use and powerful optimization tool for the adsorption chiller operating in the complex HC system.
Źródło:
Bulletin of the Polish Academy of Sciences. Technical Sciences; 2021, 69, 3; e137054, 1--11
0239-7528
Pojawia się w:
Bulletin of the Polish Academy of Sciences. Technical Sciences
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-5 z 5

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies