Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "lokalny wzorzec binarny" wg kryterium: Temat


Wyświetlanie 1-2 z 2
Tytuł:
Rgb-D face recognition using LBP-DCT algorithm
Autorzy:
Kumar, Sunil B L
Kumari, Sharmila M
Powiązania:
https://bibliotekanauki.pl/articles/1956066.pdf
Data publikacji:
2021
Wydawca:
Polskie Towarzystwo Promocji Wiedzy
Tematy:
RGB-D
kinect
local binary pattern
pattern recognition
feature extraction
histogram
face recognition
lokalny wzorzec binarny
rozpoznawanie wzorców
wyodrębnianie cech
rozpoznawanie twarzy
Opis:
Face recognition is one of the applications in image processing that recognizes or checks an individual's identity. 2D images are used to identify the face, but the problem is that this kind of image is very sensitive to changes in lighting and various angles of view. The images captured by 3D camera and stereo camera can also be used for recognition, but fairly long processing times is needed. RGB-D images that Kinect produces are used as a new alternative approach to 3D images. Such cameras cost less and can be used in any situation and any environment. This paper shows the face recognition algorithms’ performance using RGB-D images. These algorithms calculate the descriptor which uses RGB and Depth map faces based on local binary pattern. Those images are also tested for the fusion of LBP and DCT methods. The fusion of LBP and DCT approach produces a recognition rate of 97.5% during the experiment
Źródło:
Applied Computer Science; 2021, 17, 3; 73-81
1895-3735
Pojawia się w:
Applied Computer Science
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Hybrid texture and gradient modeling for dynamic background subtraction identification systemin tobacco plant using 5G data service
Autorzy:
Gowda Thirthe, M.T.
Chandrika, J.
Powiązania:
https://bibliotekanauki.pl/articles/38699145.pdf
Data publikacji:
2023
Wydawca:
Instytut Podstawowych Problemów Techniki PAN
Tematy:
background subtraction
local binary pattern
tobacco plant
texture
Gaussian mixture model
illumination change
plant disease identification system
usuwanie tła
lokalny wzorzec binarny
tytoń
tekstura
model mieszaniny Gaussa
zmiana oświetlenia
system identyfikacji chorób roślin
Opis:
Background: Detecting the plants as objects of interest in any vision-based input sequence is highly complex due to nonlinear background objects such as rocks, shadows,etc. Therefore, it is a difficult task and an emerging one with the development of precision agriculture systems. The nonlinear variations of pixel intensity with illuminationand other causes such as blurs and poor video quality also make the object detection taskchallenging. To detect the object of interest, background subtraction (BS) is widely usedin many plant disease identification systems, and its detection rate largely depends on thenumber of features used to suppress and isolate the foreground region and its sensitivitytoward image nonlinearity. Methodology: A hybrid invariant texture and color gradient-based approach is proposed to model the background for dynamic BS, and its performance is validated byvarious real-time video captures covering different kinds of complex backgrounds and various illumination changes. Based on the experimental results, a simple multimodal featureattribute, which includes several invariant texture measures and color attributes, yieldsfinite precision accuracy compared with other state-of-art detection methods. Experimental evaluation of two datasets shows that the new model achieves superior performanceover existing results in spectral-domain disease identification model. 5G assistance: After successful identification of tobacco plant and its analysis, the finalresults are stored in a cloud-assisted server as a database that allows all kinds of 5G servicessuch as IoT and edge computing terminals for data access with valid authentication fordetailed analysis and references.
Źródło:
Computer Assisted Methods in Engineering and Science; 2023, 30, 1; 41-54
2299-3649
Pojawia się w:
Computer Assisted Methods in Engineering and Science
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-2 z 2

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies