Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "locating-dominating set" wg kryterium: Temat


Wyświetlanie 1-6 z 6
Tytuł:
A Note on the Locating-Total Domination in Graphs
Autorzy:
Miller, Mirka
Rajan, R. Sundara
Jayagopal, R.
Rajasingh, Indra
Manuel, Paul
Powiązania:
https://bibliotekanauki.pl/articles/31341658.pdf
Data publikacji:
2017-08-01
Wydawca:
Uniwersytet Zielonogórski. Wydział Matematyki, Informatyki i Ekonometrii
Tematy:
dominating set
total dominating set
locating-dominating set
locating-total dominating set
regular graphs
Opis:
In this paper we obtain a sharp (improved) lower bound on the locating-total domination number of a graph, and show that the decision problem for the locating-total domination is NP-complete.
Źródło:
Discussiones Mathematicae Graph Theory; 2017, 37, 3; 745-754
2083-5892
Pojawia się w:
Discussiones Mathematicae Graph Theory
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Bounds on the Locating-Domination Number and Differentiating-Total Domination Number in Trees
Autorzy:
Rad, Nader Jafari
Rahbani, Hadi
Powiązania:
https://bibliotekanauki.pl/articles/31342324.pdf
Data publikacji:
2018-05-01
Wydawca:
Uniwersytet Zielonogórski. Wydział Matematyki, Informatyki i Ekonometrii
Tematy:
locating-dominating set
differentiating-total dominating set
tree
Opis:
A subset $S$ of vertices in a graph $G = (V,E)$ is a dominating set of $G$ if every vertex in $V − S$ has a neighbor in $S$, and is a total dominating set if every vertex in $V$ has a neighbor in $S$. A dominating set $S$ is a locating-dominating set of $G$ if every two vertices $ x, y \in V − S$ satisfy $N(x) \cap S \ne N(y) \cap S$. The locating-domination number $ \gamma_L (G) $ is the minimum cardinality of a locating-dominating set of $G$. A total dominating set $S$ is called a differentiating-total dominating set if for every pair of distinct vertices $u$ and $v$ of $G$, $ N[u] \cap S \ne N[v] \cap S $. The minimum cardinality of a differentiating-total dominating set of $G$ is the differentiating-total domination number of $G$, denoted by $ \gamma_t^D (G) $. We obtain new upper bounds for the locating-domination number, and the differentiating-total domination number in trees. Moreover, we characterize all trees achieving equality for the new bounds.
Źródło:
Discussiones Mathematicae Graph Theory; 2018, 38, 2; 455-462
2083-5892
Pojawia się w:
Discussiones Mathematicae Graph Theory
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Fault Tolerant Detectors for Distinguishing Sets in Graphs
Autorzy:
Seo, Suk J.
Slater, Peter J.
Powiązania:
https://bibliotekanauki.pl/articles/31234046.pdf
Data publikacji:
2015-11-01
Wydawca:
Uniwersytet Zielonogórski. Wydział Matematyki, Informatyki i Ekonometrii
Tematy:
distinguishing sets
fault tolerant detectors
redundant distinguishing open-locating-dominating set
detection distinguishing open-locating-dominating set
Opis:
For various domination-related parameters involving locating devices (distinguishing sets) that function as places from which detectors can determine information about the location of an “intruder”, several types of possible detector faults are identified. Two of these fault tolerant detector types for distinguishing sets are considered here, namely redundant distinguishing and detection distinguishing. Illustrating these concepts, we focus primarily on open-locating-dominating sets.
Źródło:
Discussiones Mathematicae Graph Theory; 2015, 35, 4; 797-818
2083-5892
Pojawia się w:
Discussiones Mathematicae Graph Theory
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Bounds on the Locating-Total Domination Number in Trees
Autorzy:
Wang, Kun
Ning, Wenjie
Lu, Mei
Powiązania:
https://bibliotekanauki.pl/articles/31867549.pdf
Data publikacji:
2020-02-01
Wydawca:
Uniwersytet Zielonogórski. Wydział Matematyki, Informatyki i Ekonometrii
Tematy:
tree
total dominating set
locating-total dominating set
locating-total domination number
Opis:
Given a graph $G = (V, E)$ with no isolated vertex, a subset $S$ of $V$ is called a total dominating set of $G$ if every vertex in $V$ has a neighbor in $S$. A total dominating set $S$ is called a locating-total dominating set if for each pair of distinct vertices $u$ and $v$ in $V \ S, N(u) ∩ S ≠ N(v) ∩ S$. The minimum cardinality of a locating-total dominating set of $G$ is the locating-total domination number, denoted by $γ_t^L(G)$. We show that, for a tree $T$ of order $n ≥ 3$ and diameter $d$, \(\frac{d+1}{2}≤γ_t^L(T)≤n−\frac{d−1}{2}\), and if $T$ has $l$ leaves, $s$ support vertices and $s_1$ strong support vertices, then \(γ_t^L(T)≥max\Big\{\frac{n+l−s+1}{2}−\frac{s+s_1}{4},\frac{2(n+1)+3(l−s)−s_1}{5}\Big\}\). We also characterize the extremal trees achieving these bounds.
Źródło:
Discussiones Mathematicae Graph Theory; 2020, 40, 1; 25-34
2083-5892
Pojawia się w:
Discussiones Mathematicae Graph Theory
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Optimal Locating-Total Dominating Sets in Strips of Height 3
Autorzy:
Junnila, Ville
Powiązania:
https://bibliotekanauki.pl/articles/31339416.pdf
Data publikacji:
2015-08-01
Wydawca:
Uniwersytet Zielonogórski. Wydział Matematyki, Informatyki i Ekonometrii
Tematy:
locating-total dominating set
domination
square grid
strip
Opis:
A set C of vertices in a graph G = (V,E) is total dominating in G if all vertices of V are adjacent to a vertex of C. Furthermore, if a total dominating set C in G has the additional property that for any distinct vertices u, v ∈ V \ C the subsets formed by the vertices of C respectively adjacent to u and v are different, then we say that C is a locating-total dominating set in G. Previously, locating-total dominating sets in strips have been studied by Henning and Jafari Rad (2012). In particular, they have determined the sizes of the smallest locating-total dominating sets in the finite strips of height 2 for all lengths. Moreover, they state as open question the analogous problem for the strips of height 3. In this paper, we answer the proposed question by determining the smallest sizes of locating-total dominating sets in the finite strips of height 3 as well as the smallest density in the infinite strip of height 3.
Źródło:
Discussiones Mathematicae Graph Theory; 2015, 35, 3; 447-462
2083-5892
Pojawia się w:
Discussiones Mathematicae Graph Theory
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
The Compared Costs of Domination Location-Domination and Identification
Autorzy:
Hudry, Olivier
Lobstein, Antoine
Powiązania:
https://bibliotekanauki.pl/articles/32083840.pdf
Data publikacji:
2020-02-01
Wydawca:
Uniwersytet Zielonogórski. Wydział Matematyki, Informatyki i Ekonometrii
Tematy:
graph theory
dominating set
locating-dominating code
identifying code
twin-free graph
Opis:
Let G = (V, E) be a finite graph and r ≥ 1 be an integer. For v ∈ V, let Br(v) = {x ∈ V : d(v, x) ≤ r} be the ball of radius r centered at v. A set C ⊆ V is an r-dominating code if for all v ∈ V, we have Br(v) ∩ C ≠ ∅; it is an r-locating-dominating code if for all v ∈ V, we have Br(v) ∩ C ≠ ∅, and for any two distinct non-codewords x ∈ V \ C, y ∈ V \ C, we have Br(x) ∩ C ≠ Br(y) ∩ C; it is an r-identifying code if for all v ∈ V, we have Br(v) ∩ C ≠ ∅, and for any two distinct vertices x ∈ V, y ∈ V, we have Br(x) ∩ C ≠ Br(y) ∩ C. We denote by γr(G) (respectively, ldr(G) and idr(G)) the smallest possible cardinality of an r-dominating code (respectively, an r-locating-dominating code and an r-identifying code). We study how small and how large the three differences idr(G)−ldr(G), idr(G)−γr(G) and ldr(G) − γr(G) can be.
Źródło:
Discussiones Mathematicae Graph Theory; 2020, 40, 1; 127-147
2083-5892
Pojawia się w:
Discussiones Mathematicae Graph Theory
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-6 z 6

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies