Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "locating domination number" wg kryterium: Temat


Wyświetlanie 1-4 z 4
Tytuł:
On locating-domination in graphs
Autorzy:
Chellali, Mustapha
Mimouni, Malika
Slater, Peter
Powiązania:
https://bibliotekanauki.pl/articles/744569.pdf
Data publikacji:
2010
Wydawca:
Uniwersytet Zielonogórski. Wydział Matematyki, Informatyki i Ekonometrii
Tematy:
upper locating-domination number
locating-domination number
Opis:
A set D of vertices in a graph G = (V,E) is a locating-dominating set (LDS) if for every two vertices u,v of V-D the sets N(u)∩ D and N(v)∩ D are non-empty and different. The locating-domination number $γ_L(G)$ is the minimum cardinality of a LDS of G, and the upper locating-domination number, $Γ_L(G)$ is the maximum cardinality of a minimal LDS of G. We present different bounds on $Γ_L(G)$ and $γ_L(G)$.
Źródło:
Discussiones Mathematicae Graph Theory; 2010, 30, 2; 223-235
2083-5892
Pojawia się w:
Discussiones Mathematicae Graph Theory
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Bounds on the Locating Roman Domination Number in Trees
Autorzy:
Jafari Rad, Nader
Rahbani, Hadi
Powiązania:
https://bibliotekanauki.pl/articles/16647912.pdf
Data publikacji:
2018-02-01
Wydawca:
Uniwersytet Zielonogórski. Wydział Matematyki, Informatyki i Ekonometrii
Tematy:
Roman domination number
locating domination number
locating Roman domination number
tree
Opis:
A Roman dominating function (or just RDF) on a graph G = (V, E) is a function f : V → {0, 1, 2} satisfying the condition that every vertex u for which f(u) = 0 is adjacent to at least one vertex v for which f(v) = 2. The weight of an RDF f is the value f(V (G)) = ∑u∈V(G) f(u). An RDF f can be represented as f = (V0, V1, V2), where Vi = {v ∈ V : f(v) = i} for i = 0, 1, 2. An RDF f = (V0, V1, V2) is called a locating Roman dominating function (or just LRDF) if N(u) ∩ V2 ≠ N(v) ∩ V2 for any pair u, v of distinct vertices of V0. The locating Roman domination number $\gamma _R^L (G)$ is the minimum weight of an LRDF of G. In this paper, we study the locating Roman domination number in trees. We obtain lower and upper bounds for the locating Roman domination number of a tree in terms of its order and the number of leaves and support vertices, and characterize trees achieving equality for the bounds.
Źródło:
Discussiones Mathematicae Graph Theory; 2018, 38, 1; 49-62
2083-5892
Pojawia się w:
Discussiones Mathematicae Graph Theory
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Bounds on the Locating Roman Domination Number in Trees
Autorzy:
Jafari Rad, Nader
Rahbani, Hadi
Powiązania:
https://bibliotekanauki.pl/articles/31342446.pdf
Data publikacji:
2018-02-01
Wydawca:
Uniwersytet Zielonogórski. Wydział Matematyki, Informatyki i Ekonometrii
Tematy:
Roman domination number
locating domination number
locating Roman domination number
tree
Opis:
A Roman dominating function (or just RDF) on a graph $ G = (V, E) $ is a function $ f : V \rightarrow \{ 0, 1, 2 \} $ satisfying the condition that every vertex $u$ for which $ f(u) = 0$ is adjacent to at least one vertex $v$ for which $f(v) = 2$. The weight of an RDF $f$ is the value $ f(V (G)) = \Sigma_{ u \in V (G) } f(u) $. An RDF $f$ can be represented as $ f = (V_0, V_1, V_2) $, where $ V_i = \{ v \in V : f(v) = i \} $ for $ i = 0, 1, 2 $. An RDF $ f = (V_0, V_1, V_2) $ is called a locating Roman dominating function (or just LRDF) if $ N(u) \cap V_2 \ne N(v) \cap V_2 $ for any pair $u$, $v$ of distinct vertices of $ V_0 $. The locating Roman domination number $ \gamma_R^L (G) $ is the minimum weight of an LRDF of $G$. In this paper, we study the locating Roman domination number in trees. We obtain lower and upper bounds for the locating Roman domination number of a tree in terms of its order and the number of leaves and support vertices, and characterize trees achieving equality for the bounds.
Źródło:
Discussiones Mathematicae Graph Theory; 2018, 38, 1; 49-62
2083-5892
Pojawia się w:
Discussiones Mathematicae Graph Theory
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Bounds on the Locating-Total Domination Number in Trees
Autorzy:
Wang, Kun
Ning, Wenjie
Lu, Mei
Powiązania:
https://bibliotekanauki.pl/articles/31867549.pdf
Data publikacji:
2020-02-01
Wydawca:
Uniwersytet Zielonogórski. Wydział Matematyki, Informatyki i Ekonometrii
Tematy:
tree
total dominating set
locating-total dominating set
locating-total domination number
Opis:
Given a graph $G = (V, E)$ with no isolated vertex, a subset $S$ of $V$ is called a total dominating set of $G$ if every vertex in $V$ has a neighbor in $S$. A total dominating set $S$ is called a locating-total dominating set if for each pair of distinct vertices $u$ and $v$ in $V \ S, N(u) ∩ S ≠ N(v) ∩ S$. The minimum cardinality of a locating-total dominating set of $G$ is the locating-total domination number, denoted by $γ_t^L(G)$. We show that, for a tree $T$ of order $n ≥ 3$ and diameter $d$, \(\frac{d+1}{2}≤γ_t^L(T)≤n−\frac{d−1}{2}\), and if $T$ has $l$ leaves, $s$ support vertices and $s_1$ strong support vertices, then \(γ_t^L(T)≥max\Big\{\frac{n+l−s+1}{2}−\frac{s+s_1}{4},\frac{2(n+1)+3(l−s)−s_1}{5}\Big\}\). We also characterize the extremal trees achieving these bounds.
Źródło:
Discussiones Mathematicae Graph Theory; 2020, 40, 1; 25-34
2083-5892
Pojawia się w:
Discussiones Mathematicae Graph Theory
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-4 z 4

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies