Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "locally Hamiltonian" wg kryterium: Temat


Wyświetlanie 1-3 z 3
Tytuł:
A Note on Cycles in Locally Hamiltonian and Locally Hamilton-Connected Graphs
Autorzy:
Tang, Long
Vumar, Elkin
Powiązania:
https://bibliotekanauki.pl/articles/32032199.pdf
Data publikacji:
2020-02-01
Wydawca:
Uniwersytet Zielonogórski. Wydział Matematyki, Informatyki i Ekonometrii
Tematy:
locally connected
locally Hamiltonian
locally Hamilton-connected
fully cycle extendability
weakly pancyclicity
Opis:
Let \(\mathcal{P}\) be a property of a graph. A graph G is said to be locally \(\mathcal{P}\), if the subgraph induced by the open neighbourhood of every vertex in G has property \(\mathcal{P}\). Ryjáček conjectures that every connected, locally connected graph is weakly pancyclic. Motivated by the above conjecture, van Aardt et al. [S.A.van Aardt, M. Frick, O.R. Oellermann and J.P.de Wet, Global cycle properties in locally connected, locally traceable and locally Hamiltonian graphs, Discrete Appl. Math. 205 (2016) 171–179] investigated the global cycle structures in connected, locally traceable/Hamiltonian graphs. Among other results, they proved that a connected, locally Hamiltonian graph G with maximum degree at least |V (G)| − 5 is weakly pancyclic. In this note, we improve this result by showing that such a graph with maximum degree at least |V (G)|−6 is weakly pancyclic. Furthermore, we show that a connected, locally Hamilton-connected graph with maximum degree at most 7 is fully cycle extendable.
Źródło:
Discussiones Mathematicae Graph Theory; 2020, 40, 1; 77-84
2083-5892
Pojawia się w:
Discussiones Mathematicae Graph Theory
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Arc-Disjoint Hamiltonian Cycles in Round Decomposable Locally Semicomplete Digraphs
Autorzy:
Li, Ruijuan
Han, Tingting
Powiązania:
https://bibliotekanauki.pl/articles/31342322.pdf
Data publikacji:
2018-05-01
Wydawca:
Uniwersytet Zielonogórski. Wydział Matematyki, Informatyki i Ekonometrii
Tematy:
locally semicomplete digraph
local tournament
round decomposable
arc-disjoint
Hamiltonian cycle
Hamiltonian path
Opis:
Let D = (V,A) be a digraph; if there is at least one arc between every pair of distinct vertices of D, then D is a semicomplete digraph. A digraph D is locally semicomplete if for every vertex x, the out-neighbours of x induce a semicomplete digraph and the in-neighbours of x induce a semicomplete digraph. A locally semicomplete digraph without 2-cycle is a local tournament. In 2012, Bang-Jensen and Huang [J. Combin Theory Ser. B 102 (2012) 701–714] concluded that every 2-arc-strong locally semicomplete digraph which is not the second power of an even cycle has two arc-disjoint strong spanning subdigraphs, and proposed the conjecture that every 3-strong local tournament has two arc-disjoint Hamiltonian cycles. According to Bang-Jensen, Guo, Gutin and Volkmann, locally semicomplete digraphs have three subclasses: the round decomposable; the non-round decomposable which are not semicomplete; the non-round decomposable which are semicomplete. In this paper, we prove that every 3-strong round decomposable locally semicomplete digraph has two arc-disjoint Hamiltonian cycles, which implies that the conjecture holds for the round decomposable local tournaments. Also, we characterize the 2-strong round decomposable local tournaments each of which contains a Hamiltonian path P and a Hamiltonian cycle arc-disjoint from P.
Źródło:
Discussiones Mathematicae Graph Theory; 2018, 38, 2; 477-490
2083-5892
Pojawia się w:
Discussiones Mathematicae Graph Theory
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Nested Locally Hamiltonian Graphs and the Oberly-Sumner Conjecture
Autorzy:
de Wet, Johan P.
Frick, Marietjie
Powiązania:
https://bibliotekanauki.pl/articles/32222536.pdf
Data publikacji:
2022-11-01
Wydawca:
Uniwersytet Zielonogórski. Wydział Matematyki, Informatyki i Ekonometrii
Tematy:
locally traceable
locally hamiltonian
Hamilton Cycle Problem
locally k -nested-hamiltonian
Oberly-Sumner Conjecture
Opis:
A graph G is locally P, abbreviated L, if for every vertex v in G the open neighbourhood N(v) of v is non-empty and induces a graph with property P. Specifically, a graph G without isolated vertices is locally connected (LC) if N(v) induces a connected graph for each v ∈ V (G), and locally hamiltonian (LH) if N(v) induces a hamiltonian graph for each v ∈ V (G). A graph G is locally locally P (abbreviated L2P) if N(v) is non-empty and induces a locally P graph for every v ∈ V (G). This concept is generalized to an arbitrary degree of nesting. For any k ≥ 0 we call a graph locally k-nested-hamiltonian if it is LmC for m = 0, 1, . . ., k and LkH (with L0C and L0H meaning connected and hamiltonian, respectively). The class of locally k-nested-hamiltonian graphs contains important subclasses. For example, Skupień had already observed in 1963 that the class of connected LH graphs (which is the class of locally 1-nested-hamiltonian graphs) contains all triangulations of closed surfaces. We show that for any k ≥ 1 the class of locally k-nested-hamiltonian graphs contains all simple-clique (k + 2)-trees. In 1979 Oberly and Sumner proved that every connected K1,3-free graph that is locally connected is hamiltonian. They conjectured that for k ≥ 1, every connected K1,k+3-free graph that is locally (k + 1)-connected is hamiltonian. We show that locally k-nested-hamiltonian graphs are locally (k + 1)-connected and consider the weaker conjecture that every K1,k+3-free graph that is locally k-nested-hamiltonian is hamiltonian. We show that if our conjecture is true, it would be “best possible” in the sense that for every k ≥ 1 there exist K1,k+4-free locally k-nested-hamiltonian graphs that are non-hamiltonian. We also attempt to determine the minimum order of non-hamiltonian locally k-nested-hamiltonian graphs and investigate the complexity of the Hamilton Cycle Problem for locally k-nested-hamiltonian graphs with restricted maximum degree.
Źródło:
Discussiones Mathematicae Graph Theory; 2022, 42, 4; 1281-1312
2083-5892
Pojawia się w:
Discussiones Mathematicae Graph Theory
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-3 z 3

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies