Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "linear support vector machine" wg kryterium: Temat


Wyświetlanie 1-7 z 7
Tytuł:
An Eclectic Approach to Network Service Failure Detection Based on Multicriteria Analysis with an Example of Mixing Probabilistic Context Free Grammar Models
Autorzy:
Białoń, P.
Powiązania:
https://bibliotekanauki.pl/articles/307950.pdf
Data publikacji:
2008
Wydawca:
Instytut Łączności - Państwowy Instytut Badawczy
Tematy:
failure detection
linear separation
probabilistic context free grammars
support vector machine (SVM)
Opis:
A method of failure detection in telecommunication networks is presented. This is a meta-method that correlates alarms raised by failure-detection modules based on various philosophies. The correlation takes into account two main characteristics of each module and the whole metamethod: the percentage of false alarms and the percentage of omitted failures. The trade-off between them is tackled with aspiration-based multicriteria analysis. The alarms are correlated using linear classification by support vector machines. An example of the profitability of correlating alarms in such way is shown. This is an example of probabilistic context free grammars (PCFGs), used to model the proper runtime paths of network services (and thus usable for detecting an improper behavior of the services). It is shown that the linearly mixing PCFGs can add context handling to the PCFG model, thus augmenting the capabilities of the model.
Źródło:
Journal of Telecommunications and Information Technology; 2008, 4; 32-39
1509-4553
1899-8852
Pojawia się w:
Journal of Telecommunications and Information Technology
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Badanie autentyczności cyfrowych nagrań fonicznych utrwalonych w plikach MP3
Autenticity investigation of digital audio recorded as MP3 files
Autorzy:
Korycki, Rafał
Powiązania:
https://bibliotekanauki.pl/articles/1374046.pdf
Data publikacji:
2014
Wydawca:
Centralne Laboratorium Kryminalistyczne Policji
Tematy:
badanie autentyczności nagrań cyfrowych
wykrywanie montażu
badanie dowodów cyfrowych
podwójna i wielokrotna kompresja MP3
MDCT
metody uczenia maszynowego z nadzorem
maszyna wektorów nośnych (SVM)liniowa analiza dyskryminacyjna (LDA)
authenticity examination of the digital recordings
detection of montage
testing digital evidence
double and multiple MP3 compression
supervised machine learning methods
support vector machine (SVM)
linear discriminant analysis (LDA)
Opis:
W pracy nakreślono problem wykrywania nieciągłości w nagraniach dźwiękowych poddanych stratnej kompresji i zaprezentowano nowe metody, które mogą być wykorzystane do badania autentyczności cyfrowych zapisów fonicznych. Prezentowane rozwiązania bazują na statystycznych analizie danych obliczonych na podstawie wartości współczynników MDCT. Wyznaczone wektory składające się z 228 cech zostały użyte jako sekwencje treningowe dwóch algorytmów uczenia maszynowego z nadzorem: liniowej analizy dyskryminacyjnej (LDA) oraz maszyny wektorów nośnych (SVM). Detekcja wielokrotnej kompresji została wykorzystana zarówno do wykrywania modyfikacji zapisu, jak również do ujawniania śladów montażu w cyfrowych nagraniach fonicznych. Skuteczność algorytmów służących do wykrywania nieciągłości została przetestowana na specjalnie przygotowanej w tym celu bazie nagrań muzycznych składającej się z blisko miliona plików MP3. Wyniki badań zostały omówione w kontekście wpływu parametrów kompresji na możliwość detekcji ingerencji w zapis cyfrowych nagrań fonicznych.
In the work, the problem of detecting discontinuities in lossily compressed audio recordings was outlined and new methods that can be used to examine the authenticity of digital audio records were presented. The presented solutions are based on statistical analysis of the data, calculated on the basis of the value of MDCT coefficients. Designated vectors, consisting of 228 features, were used as the training sequences of two machine learning algorithms under the supervision of the linear discriminant analysis (LDA) and the support vector machine (SVM). Detection of multiple compression was both used to detect modification of the recording as well as to reveal traces of montage in digital audio recordings. The effectiveness of the algorithms for the detection of discontinuities was tested on the database of recorded music consisting of nearly one million MP3 files, specially prepared for this purpose. The results of the research were discussed in the context of the influence of parameters of the compression on the ability to detect interference in digital audio recordings.
Źródło:
Problemy Kryminalistyki; 2014, 283; 2-17
0552-2153
Pojawia się w:
Problemy Kryminalistyki
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Wykorzystanie maszyny wektorów nośnych oraz liniowej analizy dyskryminacyjnej jako klasyfikatorów cech w interfejsach mózg-komputer
Using support vector machine and linear discriminant analysis for features classification in brain-computer interfaces
Autorzy:
Jukiewicz, M.
Powiązania:
https://bibliotekanauki.pl/articles/376916.pdf
Data publikacji:
2014
Wydawca:
Politechnika Poznańska. Wydawnictwo Politechniki Poznańskiej
Tematy:
interfejs mózg-komputer
Maszyna Wektorów Nośnych
Liniowa Analiza Dyskryminacyjna
brain-computer interface
support vector machine (SVM)
linear discriminant analysis
Opis:
Głównym celem artykułu jest porównanie skuteczności klasyfikacji cech dwóch algorytmów klasyfikujących wykorzystywanych w interfejsach mózg-komputer: SVM (ang. Support Vector Machine, Maszyna Wektorów Nośnych) oraz LDA (ang. Linear Discriminant Analysis, Liniowa Analiza Dyskryminacyjna). W artykule przedstawiono interfejs, w którym użytkownikowi prezentowane są dwa bodźce migające z różną częstotliwością (10 i 15 Hz), a następnie za pomocą elektrod elektroencefalografu mierzona jest odpowiedź elektryczna mózgu. W takich interfejsach sygnał zbierany jest zwykle w okolicach potylicznych (nad korą wzrokową). W prezentowanym rozwiązaniu sygnał mierzony jest z okolic czołowych. W przetwarzaniu i analizie sygnału zastosowano algorytmy statystycznego uczenia maszynowego. Do ekstrakcji cech sygnału wykorzystano Szybką Transformatę Fouriera, do selekcji cech: test t-Welcha, a do klasyfikacji cech: SVM oraz DLA. Na podstawie odpowiedzi uzyskanej z klasyfikatora możliwe jest np. wysterowanie kierunku skrętu robota mobilnego lub włączenie czy wyłączenie oświetlenia.
The main aim of this article is to compare the effectiveness of the classification of the two classifiers used in brain-computer interfaces: SVM (Support Vector Machine) and LDA (Linear Discriminant Analysis). The article presents an interface in which the subject is presented the two stimuli flashing at different frequencies (10 and 15 Hz) and then by using EEG electrodes electrical response of the brain is measured. In these interfaces, the signal is typically collected in the occipital area (on the visual cortex). In the presented solution the signal is measured form the prefrontal cortex. For signal processing and analysis statistical machine learning algorithms were used. For features’ extraction Fast Fourier Transform was used. For features’ selection Welch’s t test was used. For features’ classification was used SVM and DLA. Based on the responses obtained from the classifier it is possible to control the direction of a mobile robot’s movement or turning the lights on and off.
Źródło:
Poznan University of Technology Academic Journals. Electrical Engineering; 2014, 79; 25-30
1897-0737
Pojawia się w:
Poznan University of Technology Academic Journals. Electrical Engineering
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Prediction of quality parameters of a dry air separation product using machine learning methods
Przewidywanie parametrów jakościowych produktu suchej separacji węgla metodami uczenia maszynowego
Autorzy:
Żogała, Alina
Rzychoń, Maciej
Powiązania:
https://bibliotekanauki.pl/articles/216889.pdf
Data publikacji:
2019
Wydawca:
Polska Akademia Nauk. Instytut Gospodarki Surowcami Mineralnymi i Energią PAN
Tematy:
artificial neural network
multiple linear regression
support vector machine
dry coal separation
sztuczna sieć neuronowa
sucha separacja węgla
wielokrotna regresja liniowa
maszyna wektorów nośnych
Opis:
The purpose of the work was to predict the selected product parameters of the dry separation process using a pneumatic sorter. From the perspective of application of coal for energy purposes, determination of process parameters of the output as: ash content, moisture content, sulfur content, calorific value is essential. Prediction was carried out using chosen machine learning algorithms that proved to be effective in forecasting output of various technological processes in which the relationships between process parameters are non-linear. The source of data used in the work were experiments of dry separation of coal samples. Multiple linear regression was used as the baseline predictive technique. The results showed that in the case of predicting moisture and sulfur content this technique was sufficient. The more complex machine learning algorithms like support vector machine (SVM) and multilayer perceptron neural network (MPL) were used and analyzed in the case of ash content and calorific value. In addition, k-means clustering technique was applied. The role of cluster analysis was to obtain additional information about coal samples used as feed material. The combination of techniques such as multilayer perceptron neural network (MPL) or support vector machine (SVM) with k-means allowed for the development of a hybrid algorithm. This approach has significantly increased the effectiveness of the predictive models and proved to be a useful tool in the modeling of the coal enrichment process.
Celem pracy było prognozowanie wybranych parametrów produktu procesu suchej separacji za pomocą sortera pneumatycznego. Z punktu widzenia zastosowania węgla do celów energetycznych niezbędne jest określenie parametrów procesowych wydobycia, takich jak: zawartość popiołu, zawartość wilgoci, zawartość siarki czy wartość kaloryczna. Prognozowanie przeprowadzono przy użyciu wybranych algorytmów uczenia maszynowego, które okazały się skuteczne w prognozowaniu wyjścia różnych procesów technologicznych, w których zależności między parametrami procesu są nieliniowe. Źródłem danych wykorzystanych w pracy były eksperymenty procesu suchej separacji węgla. Zastosowano wieloraką regresję liniową jako bazową metodę predykcyjną. Wyniki pokazały, że w przypadku przewidywania zawartości wilgoci i siarki technika ta była wystarczająca. Bardziej złożone algorytmy uczenia maszynowego, takie jak maszyna wektorów nośnych (SVM) i perceptron wielowarstwowy (MLP) zostały wykorzystane i przeanalizowane w przypadku zawartości popiołu i wartości opałowej. Ponadto wdrożono technikę k-średnich. Rolą analizy skupień było uzyskanie dodatkowych informacji na temat próbek węgla będących wejściem procesu. Połączenie technik, takich jak perceptron wielowarstwowy (MLP) lub maszyna wektorów nośnych (SVM) z metodą k-średnich pozwoliło na opracowanie hybrydowego algorytmu. Takie podejście znacznie zwiększyło efektywność modeli predykcyjnych i okazało się użytecznym narzędziem w modelowaniu procesu wzbogacania węgla.
Źródło:
Gospodarka Surowcami Mineralnymi; 2019, 35, 2; 119-138
0860-0953
Pojawia się w:
Gospodarka Surowcami Mineralnymi
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Ship maneuvering prediction using grey box framework via adaptive RM-SVM with minor rudder
Autorzy:
Me, Bin
Sun, Licheng
Shi, Guoyou
Liu, Xiaodong
Powiązania:
https://bibliotekanauki.pl/articles/259458.pdf
Data publikacji:
2019
Wydawca:
Politechnika Gdańska. Wydział Inżynierii Mechanicznej i Okrętownictwa
Tematy:
ship maneuvering
reference model
linear support vector machine
grey box framework
similarity rule
Opis:
A grey box framework is applied to model ship maneuvering by using a reference model (RM) and a support vector machine (SVM) (RM-SVM). First, the nonlinear characteristics of the target ship are determined using the RM and the similarity rule. Then, the linear SVM adaptively fits the errors between acceleration variables of RM and target ship. Finally, the accelerations of the target ship are predicted using RM and linear SVM. The parameters of the RM are known and conveniently acquired, thus avoiding the modeling process. The SVM has the advantages of fast training, quick simulation, and no overfitting. Testing and validation are conducted using the ship model test data. The test case reveals the practicability of the RF-SVM based modeling method, while the validation cases confirm the generalization ability of the grey box framework.
Źródło:
Polish Maritime Research; 2019, 3; 115-127
1233-2585
Pojawia się w:
Polish Maritime Research
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Face Recognition Comparative Analysis Using Different Machine Learning Approaches
Autorzy:
Ahmed, Nisar
Khan, Farhan Ajmal
Ullah, Zain
Ahmed, Hasnain
Shahzad, Taimur
Ali, Nableela
Powiązania:
https://bibliotekanauki.pl/articles/2024199.pdf
Data publikacji:
2021
Wydawca:
Stowarzyszenie Inżynierów i Techników Mechaników Polskich
Tematy:
linear discriminant analysis
k-nearest neighbor
support vector machine
principal component analysis
liniowa analiza dyskryminacyjna
maszyna wektorów podporowych
analiza głównych składowych
Opis:
The problem of a facial biometrics system was discussed in this research, in which different classifiers were used within the framework of face recognition. Different similarity measures exist to solve the performance of facial recognition problems. Here, four machine learning approaches were considered, namely, K-nearest neighbor (KNN), Linear Discriminant Analysis (LDA), Support Vector Machine (SVM), and Principal Component Analysis (PCA). The usefulness of multiple classification systems was also seen and evaluated in terms of their ability to correctly classify a face. A combination of multiple algorithms such as PCA+1NN, LDA+1NN, PCA+ LDA+1NN, SVM, and SVM+PCA was used. All of them performed with exceptional values of above 90% but PCA+LDA+1N scored the highest average accuracy, i.e. 98%.
Źródło:
Advances in Science and Technology. Research Journal; 2021, 15, 1; 265-272
2299-8624
Pojawia się w:
Advances in Science and Technology. Research Journal
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Modelling Microcystis Cell Density in a Mediterranean Shallow Lake of Northeast Algeria (Oubeira Lake), Using Evolutionary and Classic Programming
Autorzy:
Arif, Salah
Djellal, Adel
Djebbari, Nawel
Belhaoues, Saber
Touati, Hassen
Guellati, Fatma Zohra
Bensouilah, Mourad
Powiązania:
https://bibliotekanauki.pl/articles/2174666.pdf
Data publikacji:
2023
Wydawca:
Akademia Górniczo-Hutnicza im. Stanisława Staszica w Krakowie. Wydawnictwo AGH
Tematy:
microcystis cell density
Multiple Linear Regression
Support Vector Machine
Particle Swarm Optimization
Genetic Algorithm
Bird Swarm Algorithm
Opis:
Caused by excess levels of nutrients and increased temperatures, freshwater cyanobacterial blooms have become a serious global issue. However, with the development of artificial intelligence and extreme learning machine methods, the forecasting of cyanobacteria blooms has become more feasible. We explored the use of multiple techniques, including both statistical [Multiple Regression Model (MLR) and Support Vector Machine (SVM)] and evolutionary [Particle Swarm Optimization (PSO), Genetic Algorithm (GA), and Bird Swarm Algorithm (BSA)], to approximate models for the prediction of Microcystis density. The data set was collected from Oubeira Lake, a natural shallow Mediterranean lake in the northeast of Algeria. From the correlation analysis of ten water variables monitored, six potential factors including temperature, ammonium, nitrate, and ortho-phosphate were selected. The performance indices showed; MLR and PSO provided the best results. PSO gave the best fitness but all techniques performed well. BSA had better fitness but was very slow across generations. PSO was faster than the other techniques and at generation 20 it passed BSA. GA passed BSA a little further, at generation 50. The major contributions of our work not only focus on the modelling process itself, but also take into consideration the main factors affecting Microcystis blooms, by incorporating them in all applied models.
Źródło:
Geomatics and Environmental Engineering; 2023, 17, 2; 31--68
1898-1135
Pojawia się w:
Geomatics and Environmental Engineering
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-7 z 7

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies