- Tytuł:
- Sharp Upper Bounds for Generalized Edge-Connectivity of Product Graphs
- Autorzy:
- Sun, Yuefang
- Powiązania:
- https://bibliotekanauki.pl/articles/31340760.pdf
- Data publikacji:
- 2016-11-01
- Wydawca:
- Uniwersytet Zielonogórski. Wydział Matematyki, Informatyki i Ekonometrii
- Tematy:
-
generalized edge-connectivity
Cartesian product
strong product
lexicographic product - Opis:
- The generalized $k$-connectivity $ \kappa_k (G) $ of a graph $G$ was introduced by Hager in 1985. As a natural counterpart of this concept, Li et al. in 2011 introduced the concept of generalized $k$-edge-connectivity which is defined as $ \lambda k(G) = \text{min} \{ \lambda (S) : S \subseteq V (G) \text{ and } |S| = k \} $, where $ \lambda(S) $ denote the maximum number $ \mathcal{l} $ of pairwise edge-disjoint trees $ T_1, T_2, . . ., T_\mathcal{l} $ in $G$ such that $ S \subseteq V ( T_i ) $ for $ 1 \le i \le \mathcal{l} $. In this paper, we study the generalized edge- connectivity of product graphs and obtain sharp upper bounds for the generalized 3-edge-connectivity of Cartesian product graphs and strong product graphs. Among our results, some special cases are also discussed.
- Źródło:
-
Discussiones Mathematicae Graph Theory; 2016, 36, 4; 833-843
2083-5892 - Pojawia się w:
- Discussiones Mathematicae Graph Theory
- Dostawca treści:
- Biblioteka Nauki