Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "laser HPDL" wg kryterium: Temat


Wyświetlanie 1-3 z 3
Tytuł:
HPDL Remelting of Anodised Al-Si-Cu Cast Alloys Surfaces
Autorzy:
Labisz, K.
Tański, T.
Janicki, D.
Powiązania:
https://bibliotekanauki.pl/articles/380279.pdf
Data publikacji:
2012
Wydawca:
Polska Akademia Nauk. Czytelnia Czasopism PAN
Tematy:
innovative foundry technologies
innovative foundry materials
remelting
surface layer
aluminium alloys
anodisation
HPDL laser
innowacyjne technologie odlewnicze
innowacyjne materiały odlewnicze
przetopienie
warstwa wierzchnia
stopy aluminium
anodowanie
laser HPDL
Opis:
The results of the investigations of the laser remelting of the AlSi9Cu4 cast aluminium alloy with the anodised and non-anodised surface layer and hardness changes have been presented in this paper. The surface layer of the tested aluminium samples was remelted with the laser of a continuous work. The power density was from 8,17•103 W/cm2 to 1,63•104 W/cm2. The metallographic tests were conducted in form of light microscope investigations of the received surface layer. The main goal of the investigation was to find the relation between the laser beam power and its power density falling on a material, evaluating the shape and geometry of the remelted layers and their hardness. As the substrate material two types of surfaces of the casted AlSi9Cu4 alloy were applied – the non–treated as cast surface as well the anodized surface. As a device for this type of surface laser treatment the High Power Diode Laser was applied with a maximum power of 2.2 kW and the dimensions of the laser beam focus of 1.8 x 6.8 mm. By mind of such treatment it is also possible to increase hardness as well eliminate porosity and develop metallurgical bonding at the coating-substrate interface. Suitable operating conditions for HPDL laser treatment were finally determined, ranging from 1.0 to 2.0 kW. Under such conditions, taking into account the absorption value, the effects of laser remelting on the surface shape and roughness were studied. The results show that surface roughness is reduced with increasing laser power by the remelting process only for the non-anodised samples, and high porosity can be found in the with high power remelted areas. The laser influence increases with the heat input of the laser processing as well with the anodisation of the surface, because of the absorption enhancement ensured through the obtained alumina layer.
Źródło:
Archives of Foundry Engineering; 2012, 12, 2s; 45-48
1897-3310
2299-2944
Pojawia się w:
Archives of Foundry Engineering
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Effect of Laser Feeding on Heat Treated Aluminium Alloy Surface Properties
Autorzy:
Labisz, K.
Tański, T.
Janicki, D.
Borek, W.
Lukaszkowicz, K.
Dobrzański, L. A.
Powiązania:
https://bibliotekanauki.pl/articles/353371.pdf
Data publikacji:
2016
Wydawca:
Polska Akademia Nauk. Czytelnia Czasopism PAN
Tematy:
manufacturing and processing
ceramic powder
laser surface treatment
aluminium alloys
HPDL laser
Opis:
In this paper are presented the investigation results concerning microstructure as well as mechanical properties of the surface layer of cast aluminium-silicon-copper alloy after heat treatment alloyed and/ or remelted with SiC ceramic powder using High Power Diode Laser (HPDL). For investigation of the achieved structure following methods were used: light and scanning electron microscopy with EDS microanalysis as well as mechanical properties using Rockwell hardness tester were measured. By mind of scanning electron microscopy, using secondary electron detection was it possible to determine the distribution of ceramic SiC powder phase occurred in the alloy after laser treatment. After the laser surface treatment carried out on the previously heat treated aluminium alloys, in the structure are observed changes concerning the distribution and morphology of the alloy phases as well as the added ceramic powder, these features influence the hardness of the obtained layers. In the structure, there were discovered three zones: the remelting zone (RZ) the heat influence zone (HAZ) and transition zone, with different structure and properties. In this paper also the laser treatment conditions: the laser power and ceramic powder feed rate were investigated. The surface laser structure changes in a manner, that there zones are revealed in the form of. This carried out investigations make it possible to develop, interesting technology, which could be very attractive for different branches of industry.
Źródło:
Archives of Metallurgy and Materials; 2016, 61, 2A; 741-746
1733-3490
Pojawia się w:
Archives of Metallurgy and Materials
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Laser welding of stainless steel
Autorzy:
Kurc-Lisiecka, A.
Lisiecki, A.
Powiązania:
https://bibliotekanauki.pl/articles/368297.pdf
Data publikacji:
2020
Wydawca:
Stowarzyszenie Komputerowej Nauki o Materiałach i Inżynierii Powierzchni w Gliwicach
Tematy:
laser welding
AISI 304 steel
high power diode laser
HPDL
spawanie laserowe
stal AISI 304
laser diodowy dużej mocy
Opis:
Purpose: of this paper was to analyze the influence of the basic parameters of laser welding (i.e. laser beam power and welding speed, as well as energy input) of butt joints of the 2.0 mm thick stainless steel AISI 304 sheets on the weld shape and joint quality. Design/methodology/approach: The preliminary trials of simulated laser welding by melting the austenitic stainless steel sheets (the so called bead-on-plate welding), as well as the welding of the test butt joints, were carried out using the high-power diode laser (HPDL) ROFIN DL 020, without the additional material (the technique of autogenous welding). A crucial parameter that determines both the mechanical properties and the corrosive resistance of a joint (the region of a weld and HAZ - heat affected zone) in the case of stainless steels with austenitic structure is energy input, which should be kept at a minimum, and at the same time full penetration and a proper shape of the fusion zone should be ensured. The investigations included the macrostructure and microstructure observations by light microscopy, researches of mechanical properties in a static tensile test and also microhardness measurements made by Vickers method. Findings: The results have shown that it is possible to provide a proper shape of the weld of fine-grained structure and narrow heat affected zone, but it requires careful selection of the welding parameters, especially a low energy input. The microhardness measurements showed that the in case of welding the butt joints using the high-power diode laser in HAZ area a slight increase in microhardness to approx. 185HV0.2 compared to base material (160-169HV0.2) and a decrease in microhardness in the fusion zone (FZ) to approx. 140- 150HV0.2 have been observed. All welded sample broke from the joint during the testing at tensile stress between 585 MPa and 605 MPa with corresponding percentage elongation in the range of 45-57%. It can be found that the joints strength is not less than the strength of the base metal of 2.0 mm thick AISI 304 austenitic stainless steel sheet. Research limitations/implications: Studies of the weldability of stainless steels indicate that the basic influence on the quality of welded joints and reduction of thermal distortions has the heat input of welding, moreover the highest quality of welded joints of austenitic stainless steel sheets are ensured only by laser welding. Practical implications: The laser welding technology can be directly applied for welding of austenitic steel AISI 304 sheets 2.0 mm thick. Originality/value: Application of high power diode laser for welding of austenitic stainless steel AISI 304.
Źródło:
Journal of Achievements in Materials and Manufacturing Engineering; 2020, 98, 1; 32-40
1734-8412
Pojawia się w:
Journal of Achievements in Materials and Manufacturing Engineering
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-3 z 3

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies