- Tytuł:
- Some Properties of the Eigenvalues of the Net Laplacian Matrix of a Signed Graph
- Autorzy:
- Stanić, Zoran
- Powiązania:
- https://bibliotekanauki.pl/articles/32304147.pdf
- Data publikacji:
- 2022-08-01
- Wydawca:
- Uniwersytet Zielonogórski. Wydział Matematyki, Informatyki i Ekonometrii
- Tematy:
-
(net) Laplacian matrix
edge perturbations
largest eigenvalue
net-degree - Opis:
- Given a signed graph $ \dot{G} $, let $ A_{ \dot{G} } $ and $ D_{\dot{G}}^\pm $ denote its standard adjacency matrix and the diagonal matrix of vertex net-degrees, respectively. The net Laplacian matrix of $ \dot{G} $ is defined to be $ N_{ \dot{G} } = D_{\dot{G}}^\pm - A_{ \dot{G} } $. In this study we give some properties of the eigenvalues of $ N_{ \dot{G} } $. In particular, we consider their behaviour under some edge perturbations, establish some relations between them and the eigenvalues of the standard Laplacian matrix and give some lower and upper bounds for the largest eigenvalue of $ N_{ \dot{G} } $.
- Źródło:
-
Discussiones Mathematicae Graph Theory; 2022, 42, 3; 893-903
2083-5892 - Pojawia się w:
- Discussiones Mathematicae Graph Theory
- Dostawca treści:
- Biblioteka Nauki