Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "krzem amorficzny" wg kryterium: Temat


Wyświetlanie 1-2 z 2
Tytuł:
Amorphous Dielectric Thin Films with Extremely Low Mechanical Loss
Amorficzne cienkie warstwy dielektryczne z bardzo małą wielkością strat mechanicznych
Autorzy:
Liu, X.
Queen, D. R.
Metcalf, T. H.
Karel, J. E.
Hallman, F.
Powiązania:
https://bibliotekanauki.pl/articles/353256.pdf
Data publikacji:
2015
Wydawca:
Polska Akademia Nauk. Czytelnia Czasopism PAN
Tematy:
internal friction
amorphous silicon
elastic modulus
speed of sound
tunneling systems
tarcie wewnętrzne
krzem amorficzny
moduł sprężystości
prędkość dźwięku
Opis:
The ubiquitous low-energy excitations are one of the universal phenomena of amorphous solids. These excitations dominate the acoustic, dielectric, and thermal properties of structurally disordered solids. One exception has been a type of hydrogenated amorphous silicon (α-Si:H) with 1 at.% H. Using low temperature elastic and thermal measurements of electron-beam evap-orated amorphous silicon (α-Si), we show that TLS can be eliminated in this system as the films become denser and more structurally ordered under certain deposition conditions. Our results demonstrate that TLS are not intrinsic to the glassy state but instead reside in low density regions of the amorphous network. This work obviates the role hydrogen was previously thought to play in removing TLS in α-Si:H and favors an ideal four-fold covalently bonded amorphous structure as the cause for the disappearance of TLS. Our result supports the notion that α-Si can be made a “perfect glass” with “crystal-like” properties, thus offering an encouraging opportunity to use it as a simple crystal dielectric alternative in applications, such as in modern quantum devices where TLS are the source of dissipation, decoherence and 1/f noise.
Wszechobecne niskoenergetyczne wzbudzenia są jednym z powszechnych zjawisk w amorficznych ciałach stałych. Wzbudzenia te dominują akustyczne, dielektryczne i termiczne właściwości strukturalnie nieuporządkowanych ciał stałych. Wyjątkiem jest rodzaj uwodornionego amorficznego krzemu (α-Si:H) o zawartości 1 at.% H. Na podstawie niskotemperaturowych badań własności sprężystych i termicznych krzemu amorficznego (α-Si) naparowanego wiązką elektronów wykazaliśmy, że w pewnych warunkach osadzania można wyeliminować TLS w tym układzie tak, że warstwy stają się gęstsze i strukturalnie bardziej uporządkowane. Uzyskane przez nas wyniki wskazują, że TLS nie są nieodłączną cechą stanu szklistego, ale lokują się w regionach o niskim zagęszczeniu sieci amorficznej. Praca niniejsza wyjaśnia, że wodór nie pełni roli w usuwaniu TLS w α-Si:H, jak dotąd sądzono, i wskazuje na idealną czterokrotnie kowalencyjnie związaną amorficzną strukturę jako przyczynę znikania TLS. Nasz wynik potwierdza koncepcję, że z α-Si można wytworzyć “doskonałe szkło” o “podobnych do krystalicznych” właściwościach, oferując w ten sposób zachęcającą możliwość wykorzystania go alternatywnie jako prosty krystaliczny dielektryk w takich aplikacjach jak w nowoczesne urządzenia kwantowe, gdzie TLS są źródłem dyssypacji dekoherencji i szumu 1/f.
Źródło:
Archives of Metallurgy and Materials; 2015, 60, 1; 359-363
1733-3490
Pojawia się w:
Archives of Metallurgy and Materials
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Bezpośrednia radiografia cyfrowa
Digital direct radiography
Autorzy:
Jezierski, G.
Powiązania:
https://bibliotekanauki.pl/articles/214636.pdf
Data publikacji:
2017
Wydawca:
Instytut Chemii i Techniki Jądrowej
Tematy:
radiografia cyfrowa
detektor typu płaski panel
amorficzny krzem (a-Si:H)
amorficzny selen
częstotliwość przestrzenna
funkcja przenoszenia modulacji (MTF)
kwantowa wydajność detekcji (DQE)
digital radiography
flat panel detector
amorphous silicon
amorphous selenium
spatial resolution
modulation
transfer function (MTF)
detective quantum efficiency (DQE)
Opis:
Dynamiczny rozwój radiografii cyfrowej (bazującej na elektronice) jaki obserwujemy w ostatnich latach skutkuje także zastosowaniem tej techniki do badań nieniszczących w przemyśle (NDT). Jednakże biorąc pod uwagę istotne różnice, przede wszystkim znacznie wyższe energie promieniowania rentgenowskiego stosowane do badania różnych obiektów przemysłowych (np. złącza spawane, odlewy, połączenia w elektronice), jak również konieczność dysponowania niekiedy lekkimi, przenośnymi detektorami powoduje, że nie da się bezpośrednio przenieść rozwiązań z medycyny do przemysłu. W niniejszej publikacji przedstawiono współczesne trendy oraz praktyczne rozwiązania detektorów cyfrowych do zastosowań w NDT.
Application of digital radiography (based on electronics) for imaging in medical practice has been recently dynamically developing, which results in implementation of this technique to industrial non-destructive testing (NDT). However, with respect to significant differences that include, first of all, much higher X-ray energies used for testing various object in industry (e.g. welds, castings, joints in electronic engineering) and often also necessity of using light, portable digital detectors, it is impossible to transfer solutions directly from medicine to industry. In this paper, modern trends and practical solutions of digital detectors designed for NDT are presented.
Źródło:
Postępy Techniki Jądrowej; 2017, 2; 37-44
0551-6846
Pojawia się w:
Postępy Techniki Jądrowej
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-2 z 2

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies