- Tytuł:
-
Segmentation of cancer masses on breast ultrasound images using modified U-net
Segmentacja mas nowotworowych na obrazach ultrasonografii piersi z użyciem zmodyfikowanego modelu U-net - Autorzy:
-
Khallassi, Ihssane
El Yousfi Alaoui, My Hachem
Jilbab, Abdelilah - Powiązania:
- https://bibliotekanauki.pl/articles/27315434.pdf
- Data publikacji:
- 2023
- Wydawca:
- Politechnika Lubelska. Wydawnictwo Politechniki Lubelskiej
- Tematy:
-
convolutional neural network
segmentation
u-net
residual neural network
konwolucyjna sieć neuronowa
segmentacja
rezydualna sieć neuronowa - Opis:
-
Breast cancer causes a huge number of women’s deaths every year. The accurate localization of a breast lesion is a crucial stage. The segmentation of breast ultrasound images participates in the improvement of the process of detection of breast anomalies. An automatic approach of segmentation of breast ultrasound images is presented in this paper, the proposed model is a modified u-net called Attention Residual U-net, designed to help radiologists in their clinical examination to determine adequately the limitation of breast tumors. Attention Residual U-net is a combination of existing models (Convolutional Neural Network U-net, the Attention Gate Mechanism and the Residual Neural Network). Public breast ultrasound images dataset of Baheya hospital in Egypt is used in this work. Dice coefficient, Jaccard index and Accuracy are used to evaluate the performance of the proposed model on the test set. Attention residual u-net can significantly give a dice coefficient = 90%, Jaccard index = 76% and Accuracy = 90%. The proposed model is compared with two other breast segmentation methods on the same dataset. The results show that the modified U-net model was able to achieve accurate segmentation of breast lesions in breast ultrasound images.
Każdego roku rak piersi powoduje ogromną liczbę zgonów kobiet. Dokładna lokalizacja zmiany piersi jest kluczowym etapem. Segmentacja obrazów ultrasonograficznych piersi przyczynia się do poprawy procesu wykrywania nieprawidłowości piersi. W tym artykule przedstawiono automatyczne podejście do segmentacji obrazów ultrasonograficznych piersi, proponowany model to zmodyfikowany U-net, nazwany Attention Residual U-net, zaprojektowany w celu wspomagania radiologów podczas badania klinicznego, w celu odpowiedniego określenia zasięgu guzów piersiowych. Attention Residual U-net jest połączeniem istniejących modeli (konwolucyjną siecią neuronową U-net, Attention Gate Mechanism i Residual Neural Network). W tym badaniu wykorzystano publiczny zbiór danych obrazów ultrasonograficznych piersi szpitala Baheya w Egipcie. Do oceny wydajności zaproponowanego modelu na zbiorze testowym wykorzystano współczynnik Dice'a, indeks Jaccarda i dokładność. Attention Residual U-net może znacznie przyczynić się do uzyskania współczynnika Dice'a równego 90%, indeksu Jaccarda równego 76% i dokładności równiej 90%. Proponowany model został porównany z dwoma innymi metodami segmentacji piersi na tym samym zbiorze danych. Wyniki pokazują, że zmodyfikowany model U-net był w stanie osiągnąć dokładną segmentację zmian piersiowych na obrazach ultrasonograficznych piersi. - Źródło:
-
Informatyka, Automatyka, Pomiary w Gospodarce i Ochronie Środowiska; 2023, 13, 3; 11--15
2083-0157
2391-6761 - Pojawia się w:
- Informatyka, Automatyka, Pomiary w Gospodarce i Ochronie Środowiska
- Dostawca treści:
- Biblioteka Nauki