Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "klasyfikator tekstu" wg kryterium: Temat


Wyświetlanie 1-3 z 3
Tytuł:
Machine translation with Javanese speech levels’ classification
Tłumaczenie maszynowe z klasyfikacją poziomów języka jawajskiego
Autorzy:
Nafalski, A.
Wibawa, A.P.
Powiązania:
https://bibliotekanauki.pl/articles/408899.pdf
Data publikacji:
2016
Wydawca:
Politechnika Lubelska. Wydawnictwo Politechniki Lubelskiej
Tematy:
expert system
hybrid corpus-based machine translation
Javanese speech levels
text classifie
systemy ekspertowe
hybrydowe tłumaczenie maszynowe
korpus języka
poziomy języka jawajskiego
klasyfikator tekstu
Opis:
A hybrid corpus-based machine processing has been developed to produce a proper Javanese speech level translation. The developed statistical memory-based machine translation shows significantly accurate results. Integration of an automatic text classifier and an expert system is proposed to help Javanese in classifying the speech levels used for a specific interlocutor. Javanese rule-based expert system is designed while naive Bayes classifier is selected after outperforming simple logic probability approach. As a result, the average of translation accuracy (72.3%) indicates that the integrated intelligent interfaces could effectively solve the Javanese language pragmatic translation problems.
Hybrydowy korpus maszynowy dla celów translacji został opracowany w celu uzyskania właściwego tłumaczenia poziomu języka jawajskiego. Rozwinięte tłumaczenie na bazie statystycznej wykazuje wyjątkowo dokładne wyniki. Integracja automatycznego klasyfikatora tekstu i systemu eksperckiego jest propozycja aby pomóc użytkownikom języka jawajskiego w klasyfikacji poziomów mowy wykorzystywanych dla konkretnego rozmówcy. Zaprojektowany system ekspertowy w powiązaniu z klasyfikatorem naive Bayes wykazuje przewagę nad prostym podejściem logiki prawdopodobieństwa. W rezultacie średnia uzyskana dokładność tłumaczenia (72,3%) wskazuje, że zintegrowane inteligentne interfejsy mogą skutecznie rozwiązywać problemy pragmatycznego tłumaczenia języka jawajskiego.
Źródło:
Informatyka, Automatyka, Pomiary w Gospodarce i Ochronie Środowiska; 2016, 1; 21-24
2083-0157
2391-6761
Pojawia się w:
Informatyka, Automatyka, Pomiary w Gospodarce i Ochronie Środowiska
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Propozycja mieszanego przetwarzania półstrukturalnego modelu opisu zdarzeń z akcji ratowniczo-gaśniczych Państwowej Straży Pożarnej PSP3
Proposition of hybrid process model semi structured description of event from fire services rescues operation
Autorzy:
Mirończuk, M.
Maciak, T.
Powiązania:
https://bibliotekanauki.pl/articles/373949.pdf
Data publikacji:
2013
Wydawca:
Centrum Naukowo-Badawcze Ochrony Przeciwpożarowej im. Józefa Tuliszkowskiego
Tematy:
eksploracja tekstu
klasyfikator Bayesa
naiwny klasyfikator Bayesa
ontologia służb ratowniczych
reprezentacja meldunków
reprezentacja przypadków zdarzeń
reprezentacja tekstu
wnioskowanie na podstawie przypadków
Bayes classifier
casebased reasoning
naive Bayes classifier
ontology for rescue service
representation of reports
text mining
text representation
Opis:
W opracowaniu przedstawiono aktualnie rozwijane reprezentacje wiedzy i sposoby opisów zdarzeń, dla systemu wnioskowania na podstawie przypadków zdarzeń służb ratowniczych Państwowej Straży Pożarnej PSP. W artykule zaproponowano sposób ich przetwarzania. Przedstawiony sposób bazuje na klasyfikacji i wyszukiwaniu opisów zdarzeń.
This paper describes a review of actual developed knowledge representation and case representation for fire services cases based reasoning system. The article also describes a method of processing the cases of events. This processing method based on classification and information retrieval.
Źródło:
Bezpieczeństwo i Technika Pożarnicza; 2013, 1; 95-106
1895-8443
Pojawia się w:
Bezpieczeństwo i Technika Pożarnicza
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
New algorithm for determining the number of features for the effective sentiment-classification of text documents
Nowy algorytm ustalania liczby zmiennych potrzebnych do klasyfikacji dokumentów tekstowych ze względu na ich wydźwięk emocjonalny
Autorzy:
Idczak, Adam
Korzeniewski, Jerzy
Powiązania:
https://bibliotekanauki.pl/articles/18105028.pdf
Data publikacji:
2023-05-31
Wydawca:
Główny Urząd Statystyczny
Tematy:
sentiment analysis
document sentiment classification
text mining
logistic regression
naive Bayes classifier
feature selection
correlation
analiza sentymentu
klasyfikacja dokumentów ze względu na wydźwięk emocjonalny
eksploracja tekstu
regresja logistyczna
naiwny klasyfikator Bayesa
dobór cech
korelacja
Opis:
Sentiment analysis of text documents is a very important part of contemporary text mining. The purpose of this article is to present a new technique of text sentiment analysis which can be used with any type of a document-sentiment-classification method. The proposed technique involves feature selection independently of a classifier, which reduces the size of the feature space. Its advantages include intuitiveness and computational noncomplexity. The most important element of the proposed technique is a novel algorithm for the determination of the number of features to be selected sufficient for the effective classification. The algorithm is based on the analysis of the correlation between single features and document labels. A statistical approach, featuring a naive Bayes classifier and logistic regression, was employed to verify the usefulness of the proposed technique. They were applied to three document sets composed of 1,169 opinions of bank clients, obtained in 2020 from a Poland-based bank. The documents were written in Polish. The research demonstrated that reducing the number of terms over 10-fold by means of the proposed algorithm in most cases improves the effectiveness of classification.
Analiza sentymentu, czyli wydźwięku emocjonalnego, dokumentów tekstowych stanowi bardzo ważną część współczesnej eksploracji tekstu (ang. text mining). Celem artykułu jest przedstawienie nowej techniki analizy sentymentu tekstu, która może znaleźć zastosowanie w dowolnej metodzie klasyfikacji dokumentów ze względu na ich wydźwięk emocjonalny. Proponowana technika polega na niezależnym od klasyfikatora doborze cech, co skutkuje zmniejszeniem rozmiaru ich przestrzeni. Zaletami tej propozycji są intuicyjność i prostota obliczeniowa. Zasadniczym elementem omawianej techniki jest nowatorski algorytm ustalania liczby terminów wystarczających do efektywnej klasyfikacji, który opiera się na analizie korelacji pomiędzy pojedynczymi cechami dokumentów a ich wydźwiękiem. W celu weryfikacji przydatności proponowanej techniki zastosowano podejście statystyczne. Wykorzystano dwie metody: naiwny klasyfikator Bayesa i regresję logistyczną. Za ich pomocą zbadano trzy zbiory dokumentów składające się z 1169 opinii klientów jednego z banków działających na terenie Polski uzyskanych w 2020 r. Dokumenty zostały napisane w języku polskim. Badanie pokazało, że kilkunastokrotne zmniejszenie liczby terminów przy zastosowaniu proponowanej techniki na ogół poprawia jakość klasyfikacji.
Źródło:
Wiadomości Statystyczne. The Polish Statistician; 2023, 68, 5; 40-57
0043-518X
Pojawia się w:
Wiadomości Statystyczne. The Polish Statistician
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-3 z 3

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies