Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "klasyfikacja obrazu" wg kryterium: Temat


Tytuł:
Wpływ własności ortofotomapy cyfrowej na wyniki klasyfikacji obiektowej pokrycia terenu
The effect of ortophotomap properties on the results of object-based classification of land cover
Autorzy:
Adamczyk, J.
Powiązania:
https://bibliotekanauki.pl/articles/131020.pdf
Data publikacji:
2013
Wydawca:
Stowarzyszenie Geodetów Polskich
Tematy:
ortofotomapa
true ortho
GEOBIA
analiza obiektowa
klasyfikacja obrazu
ortophotomap
true-ortho
object analysis
image classification
Opis:
Wysokorozdzielcza ortofotomapa lotnicza coraz częściej stosowana jest do wykonywania inwentaryzacji pokrycia terenu. W artykule postawiono tezę, że zadanie to może zostać zrealizowane za pomocą analizy obiektowej zobrazowań teledetekcyjnych (GEOBIA), jednak wynik zależy od cech jakościowych ortofotomapy, zastosowanej procedury przetworzeń oraz doświadczenia operatora. Za najważniejszy uznano pierwszy z tych czynników i odniesiono się do niego w świetle istniejących polskich wytycznych technicznych. Określono pożądane cechy ortofotomapy, które warunkują jakość wykonanej klasyfikacji obiektowej. W celu omówienia podzielono je na następujące grupy: rozdzielczość przestrzenna, liczba i rodzaj kanałów uczestniczących w procedurach klasyfikacyjnych, dokładność geometryczna i rodzaj ortorektyfikacji, cechy fotometryczne, lokalnie występujące błędy. Ich wpływ na procedurę klasyfikacyjną jest dwojaki: mogą one uniemożliwiać przeprowadzenie klasyfikacji lub przysporzyć dodatkowej pracy przy poprawianiu jej wyników. Uwzględnienie sformułowanych zaleceń znacznie ułatwi przeprowadzenie klasyfikacji tak wysokorozdzielczego zobrazowania.
High resolution ortophotomap is frequently used for land cover inventory. The paper presents conditions under which the task of automated image classification can be accomplished using GeoObject Image Analysis (GEOBIA): the ortophotomap quality, applied processing procedure, and operators experience. The first of them was recognized as most important and compared to the existing polish technical guidelines regarding the quality of the ortophotomap. The desired features of the remote sensing material were presented according to the following fields: spatial resolution of imagery, number and type of image bands used for classification procedure, geometrical accuracy, the type of orthorectification procedure, photometric properties, local errors. The recommendations are addressed for facilitating the object-based classification of high resolution orthophotomap. They are useful for planning the organizational issues of the aerial flight to acquire images used for land cover inventory. The presented guidelines are also useful for assessing the cost of the possible correction of the obtained land cover classification, if the recommendations cannot be met.
Źródło:
Archiwum Fotogrametrii, Kartografii i Teledetekcji; 2013, 25; 9-18
2083-2214
2391-9477
Pojawia się w:
Archiwum Fotogrametrii, Kartografii i Teledetekcji
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
A visual mining based framework for classification accuracy estimation
Podstawy wizualnej eksploracji do szacowania dokładności klasyfikacji
Autorzy:
Arun, P. V.
Powiązania:
https://bibliotekanauki.pl/articles/145456.pdf
Data publikacji:
2013
Wydawca:
Polska Akademia Nauk. Czytelnia Czasopism PAN
Tematy:
teledetekcja
klasyfikacja obrazu
wizualizacja
data mining
remote sensing
decision tree
image classification
visualization
Weka
Prefuse
Opis:
Classification techniques have been widely used in different remote sensing applications and correct classification of mixed pixels is a tedious task. Traditional approaches adopt various statistical parameters, however does not facilitate effective visualisation. Data mining tools are proving very helpful in the classification process. We propose a visual mining based frame work for accuracy assessment of classification techniques using open source tools such as WEKA and PREFUSE. These tools in integration can provide an efficient approach for getting information about improvements in the classification accuracy and helps in refining training data set. We have illustrated framework for investigating the effects of various resampling methods on classification accuracy and found that bilinear (BL) is best suited for preserving radiometric characteristics. We have also investigated the optimal number of folds required for effective analysis of LISS-IV images.
echniki klasyfikacji są szeroko wykorzystywane w różnych aplikacjach teledetekcyjnych, w których poprawna klasyfikacja pikseli stanowi poważne wyzwanie. Podejście tradycyjne wykorzystujące różnego rodzaju parametry statystyczne nie zapewnia efektywnej wizualizacji. Wielce obiecujące wydaje się zastosowanie do klasyfikacji narzędzi do eksploracji danych. W artykule zaproponowano podejście bazujące na wizualnej analizie eksploracyjnej, wykorzystujące takie narzędzia typu open source jak WEKA i PREFUSE. Wymienione narzędzia ułatwiają korektę pół treningowych i efektywnie wspomagają poprawę dokładności klasyfikacji. Działanie metody sprawdzono wykorzystując wpływ różnych metod resampling na zachowanie dokładności radiometrycznej i uzyskując najlepsze wyniki dla metody bilinearnej (BL).
Źródło:
Geodesy and Cartography; 2013, 62, 2; 113-121
2080-6736
2300-2581
Pojawia się w:
Geodesy and Cartography
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Wstępna ocena możliwości wykorzystania obrazów satelitarnych aster w monitorowaniu lodowców Svalbardu
Preliminary assessment of aster images applicability in monitoring the Svalbard glaciers
Autorzy:
Błaszczyk, M.
Drzewiecki, W.
Powiązania:
https://bibliotekanauki.pl/articles/129719.pdf
Data publikacji:
2006
Wydawca:
Stowarzyszenie Geodetów Polskich
Tematy:
ASTER
lodowiec
klasyfikacja
eCognition
segmentacja obrazu
tekstura
glacier
classification
segmentation
texture
Opis:
Celem prezentowanej pracy była ocena możliwości wykorzystania obrazów satelitarnych ASTER do określenia stopnia uszczelinienia powierzchni lodowców Svalbardu. Pierwszy etap badań polegał na określeniu granic lodowców. Przetestowano metody stosowane w tym celu w ramach projektu GLIMS (Global Land Ice Measurement from Space) oraz zaproponowano własne podejście oparte o wykorzystanie obrazu nasycenia uzyskanego na drodze transformacji IHS kompozycji barwnej z kanałów 345. Dla oddzielenia lodowców od obszarów kry lodowej zaproponowano wykorzystanie wybranych miar teksturalnych. Próby wyodrębnienia w granicach wydzielonych wcześniej lodowców obszarów uszczelinionych na drodze klasyfikacji nadzorowanej nie dały zadowalających rezultatów. Ostatnia część przeprowadzonych badań miała na celu przygotowanie obrazu satelitarnego do klasyfikacji obiektowej w programie eCognition poprzez opracowanie uniwersalnych parametrów segmentacji. Uzyskanie satysfakcjonujących rezultatów segmentacji w oparciu o kanały spektralne obrazu ASTER wymagało stosowania dla poszczególnych lodowców różnych parametrów skali, kształtu i zwartości, co znacząco utrudniałoby automatyzację procesu klasyfikacji. Poprawę rezultatów osiągnięto przeprowadzając wstępną segmentację w oparciu o 1 kanał obrazu ASTER, a dokładniejszą w oparciu o obraz tekstury uzyskany w programie MaZda. Otrzymane rezultaty segmentacji pozwalają przypuszczać, iż możliwe będzie przeprowadzenie klasyfikacji obiektowej w programie eCognition, której rezultatem będzie wydzielenie jako osobnej klasy obszarów uszczelinionych.
ASTER images applicability to surface crevassing assessment of tidewater glacier in southern Spitsbergen, Svalbard was investigated. In the first phase of research, the glaciers spatial extent determination methods were investigated - spectral bands rationing and Normalized Difference Snow Index (NDSI). A new method based on saturation image obtained by intensity-hue-saturation transformation of 345 colour composite was tested as well. Image texture parameters were applied to separate ice floats from glaciers. The supervised classification of original spectral bands for crevassed areas identification failed. Better results were achieved using chosen texture images, but still too many other glacier areas (e.g. dark moraines or streams on glacier surface) were classified as crevasses. In the last stage of research, object-oriented image analysis software (eCognition) was used. The parameters for ASTER image segmentation, resulting in determination of crevassed glacier areas as separate image segments, were searched. To achieve such a goal, image segmentation performed using ASTER spectral bands required different scale, shape and compactness factors for individual glaciers. This is because glacier dynamics and morphology differ, causing differences in shapes and extent of crevassed areas. Satisfactory results were achieved after the application of a two-level segmentation procedure: ASTER spectral band 1 segmentation using large scale parameter and than MaZda software computed texture image segmentation with a small-scale factor. The research confirmed the applicability of satellite ASTER images for monitoring the Svalbard glaciers. The spatial extent of the glaciers was determined by simple thresholding of transformed spectral bands and texture images. Furthermore, obtained segmentation results should enable successful application of object oriented image classification in eCognition to mapping of crevassed glacier areas. Such a classification is planned as the next stage of the research.
Źródło:
Archiwum Fotogrametrii, Kartografii i Teledetekcji; 2006, 16; 29-39
2083-2214
2391-9477
Pojawia się w:
Archiwum Fotogrametrii, Kartografii i Teledetekcji
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Klasyfikacja ziarniaków kukurydzy w oparciu o neuronową identyfikację kształtu
The classification of maizes kernels with supporting neuronal identification of shape
Autorzy:
Boniecki, P.
Nowakowski, K.
Powiązania:
https://bibliotekanauki.pl/articles/336706.pdf
Data publikacji:
2008
Wydawca:
Sieć Badawcza Łukasiewicz - Przemysłowy Instytut Maszyn Rolniczych
Tematy:
ziarniak
kukurydza
klasyfikacja
neuronowa analiza obrazu
classification
maize
corn kernel
neuronal image analysis
Opis:
Celem pracy było wytworzenie systemu informatycznego wspomagającego proces klasyfikacji ziarniaków kukurydzy w oparciu o neuronową analizę obrazu. W pracy wykorzystano metodę identyfikacji różnic kształtów analizowanych obiektów w oparciu o tzw. superformułę, zaproponowaną przez Johana Gielisa, pozwalającą na reprezentację dowolnego kształtu za pomocą sześciu niezależnych parametrów.
The aim of work was producing the computer system helping the process of classification of corn kernels using neuronal image analysis. In the project was used method of identification of shapes differences using superformula proposed by John Gielis, permitting on representation of any shape with six independent parameters.
Źródło:
Journal of Research and Applications in Agricultural Engineering; 2008, 53, 3; 14-17
1642-686X
2719-423X
Pojawia się w:
Journal of Research and Applications in Agricultural Engineering
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Classification and detection of skin disease based on machine learning and image processing evolutionary models
Autorzy:
Bordoloi, Dibyahash
Singh, Vijay
Kaliyaperumal, Karthikeyan
Ritonga, Mahyudin
Jawarneh, Malik
Kassanuk, Thanwamas
Quiñonez-Choquecota, Jose
Powiązania:
https://bibliotekanauki.pl/articles/38700501.pdf
Data publikacji:
2023
Wydawca:
Instytut Podstawowych Problemów Techniki PAN
Tematy:
skin disorder
machine learning
classification
image enhancement
image segmentation
disease detection
schorzenie skóry
nauczanie maszynowe
klasyfikacja
ulepszenie obrazu
segmentacja obrazów
wykrywanie choroby
Opis:
Skin disorders, a prevalent cause of illnesses, may be identified by studying their physical structure and history of the condition. Currently, skin diseases are diagnosed using invasive procedures such as clinical examination and histology. The examinations are quite effective and beneficial. This paper describes an evolutionary model for skin disease classification and detection based on machine learning and image processing. This model integrates image preprocessing, image augmentation, segmentation, and machine learning algorithms. The experimental investigation makes use of a dermatology data set. The model employs the machine learning methods: the support vector machine (SVM), the k-nearest neighbors (KNN), and random forest algorithms for image categorization and detection. This suggested methodology is beneficial for the accurate identification of skin disease using image analysis. The SVM algorithm achieved an accuracy of 98.8%. The KNN algorithm achieved a sensitivity of 91%. The specificity of KNN was 99%.
Źródło:
Computer Assisted Methods in Engineering and Science; 2023, 30, 2; 247-256
2299-3649
Pojawia się w:
Computer Assisted Methods in Engineering and Science
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
A sorting method for coal and gangue based on surface grayness and glossiness
Metoda sortowania węgla i skały płonnej na podstawie szarości i połysku powierzchni
Autorzy:
Cheng, Gang
Wei, Yifan
Chen, Jie
Pan, Zeye
Powiązania:
https://bibliotekanauki.pl/articles/27311660.pdf
Data publikacji:
2023
Wydawca:
Polska Akademia Nauk. Instytut Gospodarki Surowcami Mineralnymi i Energią PAN
Tematy:
surface glossiness
gangue recognition
image recognition
supervised classification
grey wolf algorithm
support vector machine
połysk powierzchni
rozpoznawanie skały płonnej
rozpoznawanie obrazu
klasyfikacja nadzorowana
algorytm szarych wilków
maszyna wektorów nośnych
Opis:
Sorting coal and gangue is important in raw coal production; accurately identifying coal and gangue is a prerequisite for effectively separating coal and gangue. The method of extracting coal and gangue using image grayscale information can effectively identify coal and gangue, but the recognition rate of the sorting process based on image grayscale information needs to substantially higher than that which is needed to meet production requirements. A sorting method of coal and gangue using object surface grayscale-gloss characteristics is proposed to improve the recognition rate of coal and gangue. Using different comparative experiments, bituminous coal from the Huainan area was used as the experimental object. It was found that the number of pixel points corresponding to the highest level grey value of the grayscale moment and illumination component of the coal and gangue images were combined into a total discriminant value and used as input for the best classification of coal and gangue using the GWO-SVM classification model. The recognition rate could reach up to 98.14%. This method sorts coal and gangue by combining surface greyness and glossiness features, optimizes the traditional greyness-based recognition method, improves the recognition rate, makes the model generalizable, enriches the research on coal and gangue recognition, and has theoretical and practical significance in enterprise production operations.
Sortowanie węgla i skały płonnej jest ważne w produkcji węgla surowego; dokładna identyfikacja węgla i skały płonnej jest warunkiem wstępnym skutecznego oddzielenia tych surowców. Metoda rozdzielenia węgla i skały płonnej przy użyciu informacji w skali szarości obrazu może skutecznie identyfikować węgiel i skałę płonną, ale stopień rozpoznawania procesu sortowania w oparciu o te informacje być znacznie wyższy niż wymagany do spełnienia wymagań produkcyjnych. W artykule zaproponowano metodę sortowania węgla i skały płonnej wykorzystującą charakterystykę połysku i skali szarości powierzchni obiektu w celu poprawy szybkości rozpoznawania węgla i skały płonnej. W badaniach wykorzystano próbki węgla kamiennego z obszaru Huainan. Stwierdzono, że liczbę punktów pikseli odpowiadającą najwyższemu poziomowi szarości momentu w skali szarości i składowej oświetlenia obrazów węgla i skały płonnej połączono w całkowitą wartość dyskryminującą i wykorzystano jako dane wejściowe dla najlepszej klasyfikacji węgla i skały płonnej przy użyciu modelu klasyfikacji GWO-SVM. Wskaźnik rozpoznawalności może osiągnąć nawet 98,14%. Ta metoda sortowania węgla i skały płonnej poprzez połączenie cech szarości i połysku powierzchni, optymalizuje tradycyjną metodę rozpoznawania w oparciu o szarość, poprawia współczynnik rozpoznawania, umożliwia uogólnienie modelu, wzbogaca badania nad rozpoznawaniem węgla i skały płonnej, ma znaczenie teoretyczne i praktyczne w operacjach produkcyjnych przedsiębiorstwa.
Źródło:
Gospodarka Surowcami Mineralnymi; 2023, 39, 3; 173--198
0860-0953
Pojawia się w:
Gospodarka Surowcami Mineralnymi
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Klasyfikacja i zliczanie pojazdów na podstawie danych wideo
Vehicle classification and counting on the basis of video data
Autorzy:
Czapla, Z.
Powiązania:
https://bibliotekanauki.pl/articles/312559.pdf
Data publikacji:
2016
Wydawca:
Instytut Naukowo-Wydawniczy "SPATIUM"
Tematy:
ruch drogowy
dane obrazowe
pojazdy
metody przetwarzania obrazu
klasyfikacja pojazdów
zliczanie pojazdów
pomiary parametrów ruchu drogowego
road traffic
vehicle classification
image data
vehicles
image processing approaches
couting vehicles
measuring traffic parameters
Opis:
Artykuł przedstawia metodę klasyfikacji i zliczania pojazdów na podstawie danych wideo. Wejściowa sekwencja obrazów składa się z ramek pobranych ze strumienia wideo otrzymywanego z kamery umieszczonej nad drogą. Poszczególne obrazy wejściowej sekwencji obrazów są przetwarzane oddzielnie. Definiowane są dwa pola detekcji, początkowe pole detekcji i końcowe pole detekcji. Obrazy wejściowej sekwencji obrazów są konwertowane do reprezentacji punktowej. Obliczana jest suma punktów krawędziowych dla każdego pola detekcji. Na podstawie sum punktów krawędziowych wyznaczane są stany pól detekcji. Analiza stanów pól detekcji umożliwia klasyfikację i zliczanie pojazdów. W artykule zamieszczono wyniki pomiarów.
The paper presents a method of vehicle classification and counting on the basis of video data. The input image sequence consists of consecutive frames taken from the video stream obtained from the camera placed above a road. Individual images from the input image sequence are processed separately. Two detection fields are defined, the initial detection field and the final detection field. Images from the input image sequence are converted into point representation. The sum of the edge points is calculated for each detection field. On the basis of the sums of edge points, states of the detection fields are determined. Analysis of the states of the detection fields allows vehicle classification and counting. Experimental results are provided.
Źródło:
Autobusy : technika, eksploatacja, systemy transportowe; 2016, 17, 6; 562-565
1509-5878
2450-7725
Pojawia się w:
Autobusy : technika, eksploatacja, systemy transportowe
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Comparison of selected classification methods in automated oak seed sorting
Porównanie wybranych metod klasyfikacji w automatycznym sortowaniu nasion dębu
Autorzy:
Grabska-Chrząstowska, J.
Kwiecień, J.
Drożdż, M.
Bubliński, Z.
Tadeusiewicz, R.
Szczepaniak, J.
Walczyk, J.
Tylek, P.
Powiązania:
https://bibliotekanauki.pl/articles/336489.pdf
Data publikacji:
2017
Wydawca:
Sieć Badawcza Łukasiewicz - Przemysłowy Instytut Maszyn Rolniczych
Tematy:
acorn classification
automatic sorting
acorn
image analysis
image processing
kNN
ANN
SVM
klasyfikacja żołędzi
automatyczne sortowanie
żołędzie
przetwarzanie obrazu
analiza obrazu
Opis:
In this paper the results of automated, vision based classification of oak seeds viability i.e. their ability to germinate are presented. In the first stage, using a photo of the seed cross-section, a set of feature vectors were determined. Then three classification methods were examined: k-nearest neighbours (k-NNs), artificial neural networks (ANNs) and support vector machines (SVMs). Finally, a 73.1% precision was obtained for kNN and a 64 bin histogram, 78.5% for ANN and a 4 bin histogram and 78.8% for SVM with a 64 bin histogram.
W artykule zaprezentowano wyniki badań automatycznej, wizyjnej klasyfikacji nasion dębu pod względem ich żywotności, tj. zdolności do kiełkowania. W pierwszym etapie prac, na podstawie zdjęcia przekroju nasiona, wyznaczono zbiór cech, który w sposób niezależny od kształtu i rozmiaru poszczególnych obiektów pozwala na opisanie ich budowy anatomicznej. Następnie zbadano, dla wyselekcjonowanych wektorów cech, trzy metody klasyfikacji: k-najbliższych sąsiadów (k-NN), artificial neural networks (ANN) oraz maszynę wektorów nośnych (SVM). Uzyskano 73,1% precyzji rozpoznawania dla histogramu o długości 64 metodą kNN, 78,5% dla histogramu o długości 4 dla ANN i 78,8% dla histogramu o długości 64 metodą SVM.
Źródło:
Journal of Research and Applications in Agricultural Engineering; 2017, 62, 1; 31-33
1642-686X
2719-423X
Pojawia się w:
Journal of Research and Applications in Agricultural Engineering
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Porównanie wyników klasyfikacji obrazów satelitarnych HYPERION i ALI
Comparison of HYPERION and ALI satellite imagery classification
Autorzy:
Hejmanowska, B.
Powiązania:
https://bibliotekanauki.pl/articles/130788.pdf
Data publikacji:
2007
Wydawca:
Stowarzyszenie Geodetów Polskich
Tematy:
klasyfikacja obrazu
HYPERION
ALI
image classification
Opis:
Celem przeprowadzonych badan było porównanie wyników klasyfikacji obrazów satelitarnych - hiperspektralnych: HYPERION i wielospektralnych: ALI, zarejestrowanych w zakresach spektralnych podobnych do obrazu: LANDSAT. Testy prowadzono na obszarze leżącym na wschód od aglomeracji krakowskiej, dla którego dysponowano obrazami z platformy EO – 1 zarejestrowanymi w 2006 roku, dzięki projektowi KBN (nr 3T 09D 09429). W badaniach wykorzystano oprogramowanie specjalistyczne (ENVI 4.1) dedykowane opracowaniom danych teletedetekcyjnych. Obrazy HYPERION zostały wstępnie przetworzone w celu usunięcia zakłóceń spowodowanych wpływem atmosfery i tzw. efektem „smiling”. Klasyfikacje przeprowadzono tylko metodami tradycyjnie wykorzystywanymi w przetwarzaniu obrazów wielospektralnych, czyli za pomocą klasyfikacji nienadzorowanej i nadzorowanej. Założenie metodyczne porównania wyników klasyfikacji polegało na wykorzystaniu dla obu obrazów tych samych uczących pól treningowych i podobnych pól kontrolnych wykorzystywanych do oceny dokładności. Ponadto wszystkie parametry zastosowanych algorytmów były równie_ identyczne dla obu obrazów. Pola treningowe i testowe wybierano manualnie z wykorzystaniem kompozycji barwnych. W trakcie prowadzenia testów zaistniała konieczność zredukowania liczby analizowanych kanałów obrazu HYPERION, ponieważ w przeciwnym razie nie uzyskiwano zadawalających wyników klasyfikacji. W takim przypadku dokładność klasyfikacji obrazu HYPERION była wyższa ni_ dokładność klasyfikacji obrazu ALI. Natomiast wynik klasyfikacji wszystkich kanałów obrazu HYPERION albo w ogóle był nie do zaakceptowania, albo wynik klasyfikacji był znacznie gorszy ni_ w przypadku ALI i ograniczonej liczby kanałów HYPERION.
The main aim of the research was to compare the results of satellite image classification: HYPERION and ALI, recorded in a spectral range similar to LANDSAT. Analyses were performed using the test area to the east of Krakow. Satellite iamges were obtained in 2006 thanks to scientific project KBN (no. 3T 09D 09429). The image processed with ENVI. HYPERION was initially preprocessed to remove so-called atmospheric effects, and so-called “similing” effect. The classification was performed using conventional spectral methods: unsupervised and supervised classification. The background of the comparison was applied in the same training and control area, and the same parameters of classification. Training and control areas ware selected using colour compositions. In the research, a need to reduce the amount of HYPERION channels emerged, otherwise the classification results would not be possible to interpret. In such case, the accuracy of HYPERION channel reduction classification was higher than that of ALI. The result of classification of all HYPERION image channels, however, was either completely unacceptable, or the classification result was much worse than in the case of ALI and limited number of HYPERION channels.
Źródło:
Archiwum Fotogrametrii, Kartografii i Teledetekcji; 2007, 17a; 291-300
2083-2214
2391-9477
Pojawia się w:
Archiwum Fotogrametrii, Kartografii i Teledetekcji
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Zastosowanie metody wektorów nośnych oraz komputerowej analizy obrazu w klasyfikacji korzeni marchwi
Application of support vector machines and digital image analysis in carrot roots classification
Autorzy:
Janaszek, M.
Trajer, J.
Powiązania:
https://bibliotekanauki.pl/articles/290488.pdf
Data publikacji:
2010
Wydawca:
Polskie Towarzystwo Inżynierii Rolniczej
Tematy:
analiza obrazu
klasyfikacja
marchew
SVM
digital image analysis
classification
carrot
Opis:
W pracy poruszono zagadnienie podejmowania decyzji o przydatności przetwórczej marchwi na podstawie uproszczonej informacji o barwie jej korzeni. Sprawdzono w jakim stopniu barwa pozwoli na odwzorowanie skupień korzeni o podobnych cechach chemicznych, decydujących o dalszym przeznaczeniu surowca. Do klasyfikacji korzeni wykorzystano metodę wektorów nośnych (SVM). Barwę marchwi odczytano z cyfrowych obrazów jej korzeni. Trafność klasyfikacji w zbiorze testowym wskazuje, że barwę można wykorzystać do opracowania wielokryterialnej klasyfikacji marchwi pod względem jej przydatności przetwórczej.
The article presents the study concerning the question of deciding on the processing suitability of carrot on the basis of simplified information about the color of roots. A possibility of mapping clusters of carrot roots having a similar chemical composition, which determine the further allocation of raw material, was examined. In classification of the roots support vector machine (SVM) was used. Carrot color was read from a digital image of its roots. Classification accuracy in the test set indicates that the color can be used to develop a multi-classification of carrots in terms of its processing suitability.
Źródło:
Inżynieria Rolnicza; 2010, R. 14, nr 7, 7; 75-80
1429-7264
Pojawia się w:
Inżynieria Rolnicza
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Pattern recognition approach to differentiation of disease severity in patients with amyotrophic lateral sclerosis
Autorzy:
Jóźwik, A.
Sokołowska, B.
Niebroj-Dobosz, I.
Janik, P.
Kwieciński, H.
Powiązania:
https://bibliotekanauki.pl/articles/333433.pdf
Data publikacji:
2008
Wydawca:
Uniwersytet Śląski. Wydział Informatyki i Nauki o Materiałach. Instytut Informatyki. Zakład Systemów Komputerowych
Tematy:
rozpoznawanie obrazu
klasyfikacja K-NN
erytropoetyna
pattern recognition
k-NN classifier
amyotropic lateral sclerosis
erythropoietin
Opis:
A possibility of recognition of the clinical status of patients with amyotrophic lateral sclerosis (ALS) in relation to severity of the disease was investigated. Three groups: (i) healthy controls (n=15) and two subgroups of ALS patients (ii) mild (n=15) and (iii) severe (n=15) were considered as classes. Four features of the subjects: (i) their age (AGE) (ii) erythropoietin concentration in serum (SERUM), (iii) in cerebrospinal fluid (CSF), and (iv) duration time of the disease (Tdis) were used for classifier construction based on the k Nearest Neighbours (k-NN) rule, known from pattern recognition theory. The presented results demonstrate that the pattern recognition approach may be useful for the evaluation of the severity of the ALS disease.
Źródło:
Journal of Medical Informatics & Technologies; 2008, 12; 143-147
1642-6037
Pojawia się w:
Journal of Medical Informatics & Technologies
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Klasyfikacja pokrycia terenu z wykorzystaniem obrazów Sentinel-2A przetworzonych za pomocą metody głównych składowych (PCA)
Land cover classification using Sentinel-2A images processed by the principal components method (PCA)
Autorzy:
Kałużna, Urszula
Będkowski, Krzysztof
Powiązania:
https://bibliotekanauki.pl/articles/2058371.pdf
Data publikacji:
2020
Wydawca:
Polskie Towarzystwo Geograficzne
Tematy:
teledetekcja
pokrycie terenu
EGiB
Sentinel-2A
PCA
nadzorowana klasyfikacja obrazu
remote sensing
land cover
Land and Buildings Register
supervised image classification
Opis:
Celem badań jest ocena możliwości realizacji klasyfikacji nadzorowanej z wykorzystaniem obrazów (komponentów) uzyskiwanych w wyniku przetworzenia oryginalnych obrazów Sentinel-2A za pomocą metody głównych składowych (PCA). Klasyfikację wykonano w ośmiu wariantach, z wykorzystaniem algorytmów najmniejszej odległości (MD, Minimum Distance) oraz największego prawdopodobieństwa (ML, Maximum Likelihood), przy czym zastosowano oryginalne kanały 2, 3, 4, 8 Sentinel-2A oraz różną liczbę komponentów. Wyniki klasyfikacji oceniono poprzez porównanie z danymi o pokryciu terenu według Ewidencji Gruntów i Budynków (EGiB). Przeprowadzenie klasyfikacji na ograniczonej do dwóch liczbie komponentów uzyskanych w procedurze PCA tylko nieznacznie zmieniło wyniki w porównaniu do klasyfikacji na oryginalnych, nieprzetworzonych kanałach Sentinel-2A. Najbardziej zbliżone do danych EGiB rezultaty uzyskano stosując klasyfikację ML kanałów oryginalnych, nieprzetworzonych lub używając wszystkich komponentów PCA. Podjęta próba porównania pokrycia terenu ustalonego za pomocą klasyfikacji obrazów satelitarnych z klasami pokrycia, które zostały wyodrębnione z mapy EGiB wykazała, że przetworzenie mapy z postaci wektorowej na rastrową wpływa istotnie na uzyskiwane wyniki.
The aim of the research is to assess the feasibility of supervised classification using images (components) obtained through processing the original Sentinel-2A images by means of the principal component method (PCA). The classification was performed in eight variants, using the algorithms of the minimum distance (MD) and the maximum likelihood (ML), with the original channels 2, 3, 4, 8 of Sentinel-2A and a various number of components. The results of the classification were assessed by comparing them to the land coverage data of Land and Buildings Register (Ewidencja Gruntów i Budynków – EGiB). Performing the classification on a number of PCA components limited to two only slightly altered the results compared to the classification on the original, raw Sentinel-2A channels. The results most similar to the EGiB data were obtained using the ML classification of the original channels, i.e. raw channels or using all PCA components. The attempt to compare the land coverage established by the classification of satellite images to the coverage classes that were extracted from the EGiB map revealed that processing the map from vector to raster form significantly influences the obtained results.
Źródło:
Teledetekcja Środowiska; 2020, 61; 19-37
1644-6380
Pojawia się w:
Teledetekcja Środowiska
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
A supervised approach to musculoskeletal imaging fracture detection and classification using deep learning algorithms
Autorzy:
Karanam, Santoshachandra Rao
Srinivas, Y.
Chakravarty, S.
Powiązania:
https://bibliotekanauki.pl/articles/38702595.pdf
Data publikacji:
2023
Wydawca:
Instytut Podstawowych Problemów Techniki PAN
Tematy:
musculoskeletal image
image processing
image enhancement
fracture diagnosis
fracture classification
deep neural network
obraz układu mięśniowo-szkieletowego
przetwarzanie obrazu
wzmocnienie obrazu
diagnoza złamania
klasyfikacja złamań
głęboka sieć neuronowa
Opis:
Bone fractures break bone continuity. Impact or stress causes numerous bone fractures. Fracture misdiagnosis is the most frequent mistake in emergency rooms, resulting in treatment delays and permanent impairment. According to the Indian population studies, fractures are becoming more common. In the last three decades, there has been a growth of 480 000, and by 2022, it will surpass 600 000. Classifying X-rays may be challenging, particularly in an emergency room when one must act quickly. Deep learning techniques have recently become more popular for image categorization. Deep neural networks (DNNs) can classify images and solve challenging problems. This research aims to build and evaluate a deep learning system for fracture identification and bone fracture classification (BFC). This work proposes an image-processing system that can identify bone fractures using X-rays. Images from the dataset are pre-processed, enhanced, and extracted. Then, DNN classifiers ResNeXt101, InceptionResNetV2, Xception, and NASNetLarge separate the images into the ones with unfractured and fractured bones (normal, oblique, spiral, comminuted, impacted, transverse, and greenstick). The most accurate model is InceptionResNetV2, with an accuracy of 94.58%.
Źródło:
Computer Assisted Methods in Engineering and Science; 2023, 30, 3; 369-385
2299-3649
Pojawia się w:
Computer Assisted Methods in Engineering and Science
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Zastosowanie analizy wielkości i kształtu w klasyfikacji użytków zielonych na zdjęciach Landsat ETM+
The application of the size and shape analysis in meadow classification on Landsat ETM+ images
Autorzy:
Kosiński, K.
Hoffmann-Niedek, A.
Powiązania:
https://bibliotekanauki.pl/articles/131094.pdf
Data publikacji:
2006
Wydawca:
Stowarzyszenie Geodetów Polskich
Tematy:
segmentacja obrazu
kształt
wielkość
klasyfikacja
użytkowanie łąk
image segmentation
shape
size
classification
grassland utilisation
Opis:
W naturalnym procesie widzenia z obrazu wydzielane są względnie jednorodne segmenty (Laliberte et al., 2004). Analizowane są takie cechy segmentów, jak kolor, tekstura, częstotliwość przestrzenna, położenie, wielkość, kształt, orientacja, ruch, efekt stereo (Zipser, Lamme, Shiller, 1996; Bach M., Meigen T., 1999; Jacob P., 2003). Znaczenie koloru w wizualnej interpretacji użytków zielonych na zdjęciach Landsat ETM+ można ocenić na podstawie analizy porównawczej składowych barwnych segmentów obrazu. Analiza barwna kompleksów krajobrazowo-roślinnych wydzielonych na mapie satelitarnej doliny Luciąży pozwala wyróżnić cztery kategorie użytków zielonych (Kosiński, 2005). Celem pracy jest określenie znaczenia wielkości i kształtu kompleksów w interpretacji użytków zielonych. Praca jest kontynuacją badań w dolinie Luciąży na Równinie Piotrkowskiej. Kompleksy krajobrazowo-roślinne (jednostki geobotaniczne w randze przestrzennej uroczyska) wydzielano na kompozycji dwóch zdjęć Landsat ETM+. Do delimitacji kompleksów zastosowano interaktywne grupowanie pikseli metodą Region Growing. Analiza wielkości i kształtu wydzielonych w ten sposób segmentów obrazu pozwala odróżnić łąki użytkowane na siedliskach świeżych od pozostałych użytków zielonych, roślinności darniowej i muraw. Wg dobranych empirycznie kryteriów jedenaście spośród trzynastu badanych kompleksów tego typu było prawidłowo sklasyfikowanych. Spośród pozostałych 39 kompleksów użytków zielonych 37 zostało zakwalifikowanych prawidłowo. Połączenie wyników klasyfikacji wg składowych barwnych z klasyfikacją wg wielkości i kształtu pozwala dobrać parametry klasyfikacji pozwalającej wyeliminować błędy operatora w klasyfikacji łąk użytkowanych na siedliskach świeżych. Wyniki wymagają weryfikacji na szerszym materiale, w szczególności rozszerzenia badań na inne mezoregiony.
Image processing during the human vision process tends to generalize images into homogenous areas. When interpreting grasslands on aerial photos and satellite images, image segments are understood as quasi-homogeneous vegetation units: what looks similar in a remotely sensed image is assumed to be similar in nature as well. Image segments are distinct due to a number of cues, including: color, texture, spatial frequency, contrast, size, shape, location, orientation, motion and stereo effect. It was found that four classes of meadow landscape-vegetation complexes may be distinguished based on colour components of the composition of two Landsat ETM+ images. Landscape-vegetation complexes are small geobotanic units corresponding to the nanochore level of physico-geographical units. The aim of this article was to find additional cues useful for meadow interpretation on satellite images. The hypothesis was that it was possible to employ size and shape factors in interpreting grasslands areas. Length, perimeter and area were measured for 52 segments. Classification parameters were adjusted in an empirical manner. Two indexes were produced: a stretch index and a size index calculated based on the three factors. Both indexes are required for identification of fresh meadows in use (complexes of U type), in opposition to other categories of grasslands. 13 U-type landscape--vegetation complexes were found during terrain research. Among them, 11 were correctly classified. 2 complexes of other types were incorrectly classified as U-type. Size and shape analysis appears to be an additional criterion in grassland interpretation.
Źródło:
Archiwum Fotogrametrii, Kartografii i Teledetekcji; 2006, 16; 331-339
2083-2214
2391-9477
Pojawia się w:
Archiwum Fotogrametrii, Kartografii i Teledetekcji
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
The use of neural image analysis in the identification of information encoded in a graphical form
Wykorzystanie neuronowej analizy obrazów w identyfikacji informacji zakodowanej w formie graficznej
Autorzy:
Koszela, K.
Boniecki, P.
Kuzimska, T.
Powiązania:
https://bibliotekanauki.pl/articles/956540.pdf
Data publikacji:
2015
Wydawca:
Polskie Towarzystwo Inżynierii Rolniczej
Tematy:
identification of class oocytes
quality classification
computer image analysis
image analysis
artificial neural networks
identyfikacja klas oocytów
klasyfikacja jakościowa
analiza obrazu
sztuczne sieci neuronowe
Opis:
Numerous scientific and research centres are searching for solutions concerning the problem of quality classification of animal oocytes. Conducting such studies is purposeful, particularly in the context of constant attempts to improve the quality of food products, which depends on the breeding value of livestock. Therefore, searching for methods of stimulation of proper development of a larger number of animal oocytes, particularly in extracorporeal conditions, gains special importance. An increasing interest in assisted reproduction techniques resulted in searching for new, increasingly effective methods of quality assessment of mammalian gametes and embryos. The expected progress in the production of animal embryos in vitro is largely dependent on proper classification of obtained oocytes. The aim of this work was to develop a non-invasive method for the quality assessment of oocytes, performed on the basis of graphic information encoded in the form of monochromatic digital images obtained via microscopy techniques. The classification process was conducted based on the information presented in the form of microphotography pictures of domestic pig oocytes, using advanced methods of neural image analysis.
Rozwiązaniem problemu klasyfikacji jakościowej oocytów zwierzęcych zajmuje się wiele różnych ośrodków naukowo-badawczych. Celowość prowadzenia takich badań jest uzasadniona szczególnie w kontekście ciągłego dążenia do podnoszenia jakości produktów żywnościowych, która jest pochodną wartości hodowlanej zwierząt gospodarskich. W związku z tym, istotnego znaczenia nabierają poszukiwania metod prowadzących do stymulowania prawidłowego rozwoju większej liczby zapładnianych oocytów zwierzęcych, zwłaszcza realizowanego w warunkach pozaustrojowych. Rosnące zainteresowanie technikami wspomaganego rozrodu stało się przyczyną poszukiwania nowych, coraz bardziej efektywnych metod oceny jakościowej gamet oraz zarodków ssaków. Oczekiwany postęp w produkcji zarodków in vitro zwierząt uzależniony jest w istocie od poprawnej klasyfikacji pozyskiwanych oocytów. Celem pracy było opracowanie bezinwazyjnej metody oceny jakościowej oocytów dokonywanej w oparciu o informację graficzną zakodowana w postaci monochromatycznych obrazów cyfrowych pozyskanych metodą mikroskopową. Proces klasyfikacji zrealizowano w oparciu o informację prezentowaną w formie zdjęć mikrofotograficznych oocytów świni domowej, wykorzystując w tym celu nowoczesne metody neuronowej analizy obrazu.
Źródło:
Agricultural Engineering; 2015, 19, 3; 25-35
2083-1587
Pojawia się w:
Agricultural Engineering
Dostawca treści:
Biblioteka Nauki
Artykuł

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies