Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "klasyfikacja obiektowa (GEOBIA)" wg kryterium: Temat


Wyświetlanie 1-2 z 2
Tytuł:
Zastosowanie obiektowo zorientowanej analizy obrazu (GEOBIA) wysokorozdzielczych obrazów satelitarnych w klasyfikacji obszaru miasta Krakowa
Using the object-based image analysis (GEOBIA) in the classification of the very high resolution satellite images of Krakow municipality
Autorzy:
Wężyk, P.
de Kok, R.
Szombara, S.
Powiązania:
https://bibliotekanauki.pl/articles/130169.pdf
Data publikacji:
2007
Wydawca:
Stowarzyszenie Geodetów Polskich
Tematy:
klasyfikacja obiektowa (GEOBIA)
Ikonos
QuickBird
automatyzacja
pokrycie terenu
OBIA (Object Based Image Analysis)
automation
land use
Opis:
Technologie teledetekcyjne oraz systemy GIS osiągnęły obecnie poziom rozwoju umożliwiający pełna implementacje automatycznych metod klasyfikacji oraz procesów kontroli i aktualizacji zasobów kartograficznych będących w posiadaniu administracji publicznej. Dane teledetekcyjne pozyskiwane nowoczesnymi metodami takimi jak: lotnicze kamery cyfrowe, skanery hiperspektralne, LiDAR badz VHRS - pozwalają na poprawne skonstruowanie procesu wspomagania podejmowania decyzji na poziomie lokalnym i regionalnym takich jak np. miejscowe plany zagospodarowania przestrzennego. Ogromne zbiory danych (np. LiDAR, VHRS) muszą być coraz częściej poddawane automatycznym procesom ich przetwarzania. Obiektowo zorientowana analiza obrazu (ang. Object Based Image Analysis; akronim: GEOBIA) - zwana potocznie klasyfikacja obiektowa, wykorzystuje zaawansowane algorytmy segmentacji rastra. Rozstrzygają one o liczbie generowanych obiektów na podstawie wartości jaskrawości piksela oraz „właściwości geometrycznych” (np. kształtu, grupowania się pikseli w homogeniczne obiekty, zwartości, etc). W kolejnych krokach obiekty te są klasyfikowane na podstawie licznych zależności i właściwości, jak np. parametru homogeniczności czy stosunku długości granic do powierzchni (wykrywanie krawędzi, budynków, działek etc). Klasyfikacja obiektowa może przyjąć strukturę hierarchiczna, to znaczy raz sklasyfikowane obiekty mogą posłużyć do stworzenia nowego wyższego hierarchicznie poziomu. Taka metodyka pozwala na przygotowanie scenariuszy postepowania klasyfikacyjnego zapisywanych do plików zwanych protokołami w oprogramowaniu DEFNIENS. Nowatorskie podejście do kwestii klasyfikacji obrazu bez potrzeby wykorzystywania pól treningowych zostało już potwierdzone wieloma projektami naukowymi i ich wdrożeniami (Wężyk, de Kok, 2005; de Kok, Wężyk, 2006). W prezentowanej pracy do przeprowadzenia klasyfikacji wykorzystano 2 sceny IKONOS z dnia 25.06.2005 roku (łączny obszar 194,7 km2) oraz 1 scenę QuickBird z dnia 07.09.2006 roku (167,7 km2). Prace zostały zlecone przez Biuro Planowania Przestrzennego UM Krakowa w listopadzie 2006 roku. Obrazy VHRS poddano ortorektyfikacji (Aplication Master 5.0, Inpho) w oparciu o współczynniki RPC ale także punkty dostosowania GCP pozyskane z ortofotomap Phare 2001 oraz NMT przekazanego przez BPP UMK (Wężyk et al., 2006). Do analizy obrazów VHRS wykorzystano kanał panchromatyczny (PAN) oraz wielospektralne (MS) zakresy promieniowania. Wstępne przetwarzanie kanałów PAN polegało na zastosowaniu filtrów krawędziowych (np. Lee Sigma), w wyniku działania których otrzymano tzw. obrazy pochodne wykorzystane w procesie segmentacji. Inne obrazy biorące udział w tym złożonym procesie składającym się z 11 kroków to: poszczególne kanały MS (Blue, Green, Red, NIR), dla których wykonano analizę głównych składowych (ang. Principal Component Analysis), mapa ewidencyjna (obraz rastrowy) wykorzystywana w projekcie kartowania zieleni rzeczywistej Krakowa (służąca głównie klasyfikacji budynków przy wykorzystaniu PC3), rastrowa warstwa sieci dróg pochodząca z wektoryzacji ekranowej VHRS i z map ewidencyjnych. W toku uzgodnień z BPP UMK podjęto decyzje o przyjęciu dwóch poziomów hierarchicznych klas pokrycia terenu. Poziom 1 składał się z 9-ciu klas zajmujących odpowiednio: tereny zainwestowane – 17,42%, zieleń wysoka – 24,99%, zieleń niska – 44,31%, zieleń terenów sportowych oraz ogródków działkowych – 1,39%, zbiorniki wodne i rzeki – 1,94%, infrastruktura drogowa – 3,48%, hałdy + wysypiska + odsłonięta gleba – 0,84%, grunty orne i uprawy – 5,35% oraz cień – 0,28% obszaru badan. Trzy klasy poziomu 1, tj.: tereny zainwestowane, zieleń niska i zieleń wysoka) zdecydowano się zaprezentować na wyższym – 2 poziomie szczegółowości. Wraz z pozostałymi klasami poziom ten składał się łącznie z 22 klas. Osiągnięte rezultaty potwierdziły szerokie możliwości stosowania automatycznych metod OBIA bazujących na VHRS i innych informacjach pochodzących z systemów GIS oraz z zasobów geodezyjnokartograficznych w celu ich aktualizacji.
Recent developments in Remote Sensing and GIS have reached maturity which allows to implement the research results into standardized process flows for updating and checking the municipality cadastral information. The database containing the city cadastre already handles data fusion methods itself. Available information considerably enhance information extraction from new data collections with high quality sensors such as LiDAR, photogrammetrical imagery and VHRS data. Huge amounts of available data must be processed in sequences to keep them handable. Transferable protocols for automatic handling of VHRS data can now be put into a full production process to assist the workflow of other image data from airborne platforms and integrate these GIS output into further cadastral GIS analysis. The data fusion within this project allows a highly detailed description of the city status-quo and the basis for change detection. Further these results are besides a very important archival inventory also a basis for decision support, now and in the future. The whole workflow was of a chain of previous research projects which were put into a commercial workflow. This study shows an experience report on, how the product chain was built-up and what type of products were delivered to the municipality of Krakow (Poland).
Źródło:
Archiwum Fotogrametrii, Kartografii i Teledetekcji; 2007, 17b; 791-800
2083-2214
2391-9477
Pojawia się w:
Archiwum Fotogrametrii, Kartografii i Teledetekcji
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Wpływ własności ortofotomapy cyfrowej na wyniki klasyfikacji obiektowej pokrycia terenu
The effect of ortophotomap properties on the results of object-based classification of land cover
Autorzy:
Adamczyk, J.
Powiązania:
https://bibliotekanauki.pl/articles/131020.pdf
Data publikacji:
2013
Wydawca:
Stowarzyszenie Geodetów Polskich
Tematy:
ortofotomapa
true ortho
GEOBIA
analiza obiektowa
klasyfikacja obrazu
ortophotomap
true-ortho
object analysis
image classification
Opis:
Wysokorozdzielcza ortofotomapa lotnicza coraz częściej stosowana jest do wykonywania inwentaryzacji pokrycia terenu. W artykule postawiono tezę, że zadanie to może zostać zrealizowane za pomocą analizy obiektowej zobrazowań teledetekcyjnych (GEOBIA), jednak wynik zależy od cech jakościowych ortofotomapy, zastosowanej procedury przetworzeń oraz doświadczenia operatora. Za najważniejszy uznano pierwszy z tych czynników i odniesiono się do niego w świetle istniejących polskich wytycznych technicznych. Określono pożądane cechy ortofotomapy, które warunkują jakość wykonanej klasyfikacji obiektowej. W celu omówienia podzielono je na następujące grupy: rozdzielczość przestrzenna, liczba i rodzaj kanałów uczestniczących w procedurach klasyfikacyjnych, dokładność geometryczna i rodzaj ortorektyfikacji, cechy fotometryczne, lokalnie występujące błędy. Ich wpływ na procedurę klasyfikacyjną jest dwojaki: mogą one uniemożliwiać przeprowadzenie klasyfikacji lub przysporzyć dodatkowej pracy przy poprawianiu jej wyników. Uwzględnienie sformułowanych zaleceń znacznie ułatwi przeprowadzenie klasyfikacji tak wysokorozdzielczego zobrazowania.
High resolution ortophotomap is frequently used for land cover inventory. The paper presents conditions under which the task of automated image classification can be accomplished using GeoObject Image Analysis (GEOBIA): the ortophotomap quality, applied processing procedure, and operators experience. The first of them was recognized as most important and compared to the existing polish technical guidelines regarding the quality of the ortophotomap. The desired features of the remote sensing material were presented according to the following fields: spatial resolution of imagery, number and type of image bands used for classification procedure, geometrical accuracy, the type of orthorectification procedure, photometric properties, local errors. The recommendations are addressed for facilitating the object-based classification of high resolution orthophotomap. They are useful for planning the organizational issues of the aerial flight to acquire images used for land cover inventory. The presented guidelines are also useful for assessing the cost of the possible correction of the obtained land cover classification, if the recommendations cannot be met.
Źródło:
Archiwum Fotogrametrii, Kartografii i Teledetekcji; 2013, 25; 9-18
2083-2214
2391-9477
Pojawia się w:
Archiwum Fotogrametrii, Kartografii i Teledetekcji
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-2 z 2

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies