Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "klasyfikacja chorób neurologicznych" wg kryterium: Temat


Wyświetlanie 1-2 z 2
Tytuł:
The body balance measures for neurological disease estimation and classification
Autorzy:
Chandzlik, S.
Piecha, J.
Powiązania:
https://bibliotekanauki.pl/articles/334001.pdf
Data publikacji:
2003
Wydawca:
Uniwersytet Śląski. Wydział Informatyki i Nauki o Materiałach. Instytut Informatyki. Zakład Systemów Komputerowych
Tematy:
automatyzacja diagnostyki medycznej
klasyfikacja chorób neurologicznych
medical diagnostics automation
conclusion-making systems
neurological diseases classification
Opis:
The paper describes body balance characteristics needed for neurological diseases classification and for rehabilitation processes controlling during patient recovery processes. These diagnosis factors allow simplify the PSW (Parotec System for Windows) records recognition [1, 2] then a walk-motor disturbances level estimation. The discussed clinical experiments illustrate new methods for Parkinson disease and stroke progress monitoring. This study was based on many observations of patient walk disturbances recorded in PSW files describing the pressure distribution on an insole set of sensors [1, 2, 8]. The gait regular asymmetry in a data spectrum has been noticed as an independent factor from the disease duration and its severity. In majority of analysed cases for Parkinson disease a gravity centre of the body moved into a heel region. Trajectories of foot gravity centre elongation, their irregularities, a floor-contact time and paresis limb loading values increase also were observed. The PSW system has successfully been used for recognition and quantification of walk-motor disturbances, marking the neurological diseases level. Options available in PSW [1, 2] give the user many aims in putting proper diagnosis anyhow, due to simplify the training process of conclusion making unit several methods for data records modifications and the diagnosis factors extraction were also considered.
Źródło:
Journal of Medical Informatics & Technologies; 2003, 6; IT87-94
1642-6037
Pojawia się w:
Journal of Medical Informatics & Technologies
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
The diseases classification method on gait abnormalities characteristic contributions
Autorzy:
Chandzlik, S.
Piecha, J.
Powiązania:
https://bibliotekanauki.pl/articles/333759.pdf
Data publikacji:
2005
Wydawca:
Uniwersytet Śląski. Wydział Informatyki i Nauki o Materiałach. Instytut Informatyki. Zakład Systemów Komputerowych
Tematy:
klasyfikacja chorób neurologicznych
choroba Parkinsona
niedowład
udar niedokrwienny mózgu
automatyczne zakończenie
sieci nuronowe
neurological disease classification
Parkinson disease
hemiparesis
ischemic stroke
automatic conclusion
neural networks
Opis:
Present medicine uses computers in various applications, especially in a field of a diseases level classification and diagnosis. In many cases an automatic conclusion making units are the main goal of the computer systems usage. The software units are developed for the diseases classification or for monitoring of the disease medical treatment. An example application was described in this paper. It concerns a gait abnormalities level analysis that is described by a data records gathered by insoles of Parotec System for Windows (PSW) [17,18]. The PSW software package is used for visualisation of the gait characteristic static and dynamic characteristic features. In the authors' works many additional data components were distinguished. The field of the applications is located within the neurological gait characteristics also the source applications concern orthopaedics [16,18]. Careful analysis of the data provided the developers with new areas the PSW applications [4,11,13]. For conclusion making units the artificial networks theory was implemented [2,4,11,13]. For more effective training of the neural networks specific characteristic measures were introduced [4,5]. They allow controlling the training process more precisely, avoiding mistakes in current records classification.
Źródło:
Journal of Medical Informatics & Technologies; 2005, 9; 187-194
1642-6037
Pojawia się w:
Journal of Medical Informatics & Technologies
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-2 z 2

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies