Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "kernel methods" wg kryterium: Temat


Wyświetlanie 1-8 z 8
Tytuł:
Supervised Kernel Principal Component Analysis by Most Expressive Feature Reordering
Autorzy:
Ślot, K.
Adamiak, K.
Duch, P.
Żurek, D.
Powiązania:
https://bibliotekanauki.pl/articles/308598.pdf
Data publikacji:
2015
Wydawca:
Instytut Łączności - Państwowy Instytut Badawczy
Tematy:
feature selection
kernel methods
pattern classification
Opis:
The presented paper is concerned with feature space derivation through feature selection. The selection is performed on results of kernel Principal Component Analysis (kPCA) of input data samples. Several criteria that drive feature selection process are introduced and their performance is assessed and compared against the reference approach, which is a combination of kPCA and most expressive feature reordering based on the Fisher linear discriminant criterion. It has been shown that some of the proposed modifications result in generating feature spaces with noticeably better (at the level of approximately 4%) class discrimination properties.
Źródło:
Journal of Telecommunications and Information Technology; 2015, 2; 3-10
1509-4553
1899-8852
Pojawia się w:
Journal of Telecommunications and Information Technology
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Kernel analysis for estimating the connectivity of a network with event sequences
Autorzy:
Tezuka, T.
Claramunt, C.
Powiązania:
https://bibliotekanauki.pl/articles/91880.pdf
Data publikacji:
2017
Wydawca:
Społeczna Akademia Nauk w Łodzi. Polskie Towarzystwo Sieci Neuronowych
Tematy:
connectivity estimation
neural network
kernel methods
spike train
Opis:
Estimating the connectivity of a network from events observed at each node has many applications. One prominent example is found in neuroscience, where spike trains (sequences of action potentials) are observed at each neuron, but the way in which these neurons are connected is unknown. This paper introduces a novel method for estimating connections between nodes using a similarity measure between sequences of event times. Specifically, a normalized positive definite kernel defined on spike trains was used. The proposed method was evaluated using synthetic and real data, by comparing with methods using transfer entropy and the Victor-Purpura distance. Synthetic data was generated using CERM (Coupled Escape-Rate Model), a model that generates various spike trains. Real data recorded from the visual cortex of an anaesthetized cat was analyzed as well. The results showed that the proposed method provides an effective way of estimating the connectivity of a network when the time sequences of events are the only available information.
Źródło:
Journal of Artificial Intelligence and Soft Computing Research; 2017, 7, 1; 17-31
2083-2567
2449-6499
Pojawia się w:
Journal of Artificial Intelligence and Soft Computing Research
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
An Extended Version of the Proportional Adaptive Algorithm Based on Kernel Methods for Channel Identification with Binary Measurements
Autorzy:
Fateh, Rachid
Darif, Anouar
Safi, Said
Powiązania:
https://bibliotekanauki.pl/articles/2142314.pdf
Data publikacji:
2022
Wydawca:
Instytut Łączności - Państwowy Instytut Badawczy
Tematy:
binary measurement
BRAN channel identification
kernel methods
PNLMS
phase estimation
Opis:
In recent years, kernel methods have provided an important alternative solution, as they offer a simple way of expanding linear algorithms to cover the non-linear mode as well. In this paper, we propose a novel recursive kernel approach allowing to identify the finite impulse response (FIR) in non-linear systems, with binary value output observations. This approach employs a kernel function to perform implicit data mapping. The transformation is performed by changing the basis of the data In a high-dimensional feature space in which the relations between the different variables become linearized. To assess the performance of the proposed approach, we have compared it with two other algorithms, such as proportionate normalized least-meansquare (PNLMS) and improved PNLMS (IPNLMS). For this purpose, we used three measurable frequency-selective fading radio channels, known as the broadband radio access Network (BRAN C, BRAN D, and BRAN E), which are standardized by the European Telecommunications Standards Institute (ETSI), and one theoretical frequency selective channel, known as the Macchi’s channel. Simulation results show that the proposed algorithm offers better results, even in high noise environments, and generates a lower mean square error (MSE) compared with PNLMS and IPNLMS.
Źródło:
Journal of Telecommunications and Information Technology; 2022, 3; 47--58
1509-4553
1899-8852
Pojawia się w:
Journal of Telecommunications and Information Technology
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Kernel Ho-Kashyap classifier with generalization control
Autorzy:
Łęski, J.
Powiązania:
https://bibliotekanauki.pl/articles/907269.pdf
Data publikacji:
2004
Wydawca:
Uniwersytet Zielonogórski. Oficyna Wydawnicza
Tematy:
metoda jądrowa
metoda odporna
projekt klasyfikatora
kernel methods
classifier design
Ho-Kashyap classifier
generalization control
robust methods
Opis:
This paper introduces a new classifier design method based on a kernel extension of the classical Ho-Kashyap procedure. The proposed method uses an approximation of the absolute error rather than the squared error to design a classifier, which leads to robustness against outliers and a better approximation of the misclassification error. Additionally, easy control of the generalization ability is obtained using the structural risk minimization induction principle from statistical learning theory. Finally, examples are given to demonstrate the validity of the introduced method.
Źródło:
International Journal of Applied Mathematics and Computer Science; 2004, 14, 1; 53-61
1641-876X
2083-8492
Pojawia się w:
International Journal of Applied Mathematics and Computer Science
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Wyznaczenie powierzchni rozdziału materiału uziarnionego za pomocą nieklasycznych metod aproksymacji funkcji rozkładów wielkości i gęstości ziarna
Determination of partition surface of grained material by means of non-classical approximation methods of distributions functions of particle size and density
Autorzy:
Niedoba, T.
Powiązania:
https://bibliotekanauki.pl/articles/216878.pdf
Data publikacji:
2016
Wydawca:
Polska Akademia Nauk. Instytut Gospodarki Surowcami Mineralnymi i Energią PAN
Tematy:
powierzchnia rozdziału
nieklasyczne metody statystyczne
metody jądrowe
węgiel kamienny
osadzarka miałowa
partition surface
non-classical statistical methods
kernel methods
hard coal
dust jig
Opis:
W pracy poddano analizie materiał uziarniony, którym był węgiel kamienny pobrany z jednej z kopalń Górnego Śląska. Węgiel został pobrany z osadzarki miałowej, gdzie został rozdzielony na koncentrat i odpad. Poddano go przesiewaniu, a następnie rozdziałowi w cieczach ciężkich. Zarówno skład ziarnowy, jak i gęstościowy nadawy oraz koncentratu został zaproksymowany kilkoma klasycznymi rozkładami statystycznymi. Najlepsze rezultaty otrzymano przy zastosowaniu rozkładu Weibulla (RRB). Jednakże – ze względu na niezadowalającą jakość aproksymacji – zdecydowano się na zastosowanie nieparametrycznych metod statystycznych, które stają się coraz częściej stosowanymi alternatywami w badaniach statystycznych. W pracy zastosowano nieparametryczne metody jądrowe, a jako funkcję jądrową przyjęto jądro Gaussa. Metoda jądrowa, stosunkowo nowa, dała znacznie lepsze wyniki aproksymacji niż klasyczne rozkłady statystyczne przy zastosowaniu metody najmniejszych kwadratów. Zarówno klasyczne, jak i nieparametryczne otrzymane aproksymanty zostały ocenione za pomocą średniego błędu kwadratowego, którego wartości świadczą o tym, że dostatecznie dobrze przybliżają one wartości otrzymane empirycznie. Tak określone postacie funkcji posłużyły następnie do wyznaczenia dystrybuanty teoretycznej dla wektora (D, Ρ), gdzie D – oznacza zmienną losową opisującą wielkość ziarna, a Ρ – jego gęstość. Również i ta aproksymacja w sposób zadowalający oddała rzeczywistość. Dlatego posłużyła ona do wyznaczenia równania powierzchni rozdziału, zależnej od obu zmiennych, wielkości i gęstości ziarna, opisujących badany materiał. Otrzymana powierzchnia świadczy o tym, że możliwa jest ocena procesu rozdziału, jaki zachodzi podczas operacji przeróbczych za pomocą więcej niż jednej cechy badanego materiału, a ponadto jej jakość potwierdza, że słusznym był wybór nieparametrycznych metod statystycznych jako alternatywy dla powszechnie stosowanych metod aproksymacyjnych.
In this paper, the grained material analyzed was hard coal collected from one of the mines located in Upper Silesia. Material was collected from a dust jig where it was separated in industrial conditions by concentrate and waste. It was then screened in sieves and it was separated in dense media into density fractions. Both particle size distribution and particle density distribution for feed and concentrate were approximated by several classical distribution functions. The best results were obtained by means of the Weibull (RRB) distribution function. However, because of the unsatisfying quality of approximations it was decided to apply non-parametric statistical methods, which became more and more popular alternative methods in conducting statistical investigations. In the paper, the kernel methods were applied to this purpose and the Gauss kernel was accepted as the kernel function. Kernel method, which is relatively new, gave much better results than classical distribution functions by means of the least squared method. Both classical and non-parametric obtained distribution functions were evaluated by means of mean standard error, the values of which proved that they sufficiently well approximate the empirical data. Such function forms were then applied to determine the theoretical distribution function for vector (D, Ρ), where D is the random variable describing particle size and Ρ – its density. This approximation was sufficiently acceptable. That is why it served to determine the equation of partition surface dependent on particle size and particle density describing researched material. The obtained surface proves that it is possible to evaluate material separation which occurs during mineral processing operations, such as jigging, by means of more than one feature of researched material. Furthermore, its quality confirms that it is justified to apply non-parametric statistical methods instead of commonly used classical ones.
Źródło:
Gospodarka Surowcami Mineralnymi; 2016, 32, 1; 137-154
0860-0953
Pojawia się w:
Gospodarka Surowcami Mineralnymi
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Identyfikacja systemów nieliniowych przy pomocy kernelowego algorytmu LMS z ograniczeniem zasobów
Identification of nonlinear systems using fixed budget kernel LMS algorithm
Autorzy:
Rzepka, D.
Otfinowski, P.
Powiązania:
https://bibliotekanauki.pl/articles/408102.pdf
Data publikacji:
2012
Wydawca:
Politechnika Lubelska. Wydawnictwo Politechniki Lubelskiej
Tematy:
metody kernelowe
uczenie maszynowe
regresja nieliniowa
algorytm LMS
dobór wektorów nośnych
kernel methods
machine learning
nonlinear regression
least mean squares
pruning criterion
Opis:
W artykule zaprezentowano zastosowanie nowej, nieliniowej wersji algorytmu LMS wykorzystującej funkcje kernelowe do identyfikacji systemów nieliniowych. Aby ograniczyć ilość wektorów nośnych, będących niezbędnym elementem algorytmów opartych o metody kernelowe zastosowano kryterium selekcji. Nowy wektor wejściowy jest przyjmowany do słownika, a następnie w słowniku wyszukiwany i usuwany jest wektor, który ma najmniejszy wpływ na tworzony model nieliniowy. Przedstawiony przykład identyfikacji systemu nieliniowego potwierdza skuteczność porównywalną do algorytmów wykorzystujących większą liczbę wektorów nośnych.
In this paper a new version of kernel normalized least mean squares algorithm is applied to identification of nonlinear system. To maintain a fixed amount of support vectors, requisite for practical kernel-based algorithm, a pruning criterion is used. After admitting a new input vector to the dictionary, a least important entry is selected and discarder. A case of nonlinear system identification is presented, proving that algorithm performs well and it can maintain a performance comparable to state-of-the-art algorithms, using smaller number of support vectors.
Źródło:
Informatyka, Automatyka, Pomiary w Gospodarce i Ochronie Środowiska; 2012, 4b; 10-13
2083-0157
2391-6761
Pojawia się w:
Informatyka, Automatyka, Pomiary w Gospodarce i Ochronie Środowiska
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
One Value of Smoothing Parameter vs Interval of Smoothing Parameter Values in Kernel Density Estimation
Jedna wartość parametru wygładzania vs. przedział wartości parametru wygładzania w estymacji jądrowej funkcji gęstości
Autorzy:
Baszczyńska, Aleksandra Katarzyna
Powiązania:
https://bibliotekanauki.pl/articles/659254.pdf
Data publikacji:
2017
Wydawca:
Uniwersytet Łódzki. Wydawnictwo Uniwersytetu Łódzkiego
Tematy:
estymacja jądrowa funkcji gęstości
parametr wygładzania
metody ad hoc
kernel density estimation
smoothing parameter
ad hoc methods
Opis:
Metody ad hoc wyboru parametru wygładzania w estymacji jądrowej funkcji gęstości, chociaż często wykorzystywane w praktyce ze względu na ich prostotę i – co za tym idzie – wysoką efektywność obliczeniową, charakteryzują się dość dużym błędem. Wartość parametru wygładzania wyznaczona metodą Silvermana jest bliska wartości optymalnej tylko wtedy, gdy rozkład funkcji gęstości jest rozkładem normalnym. Dlatego też metoda ta jest stosowana przede wszystkim we wstępnym etapie wyznaczania estymatora jądrowego i stanowi jedynie punkt wyjściowy do dalszych poszukiwań wartości parametru wygładzania. W artykule przedstawione są metody ad hoc wyboru parametru wygładzania oraz zaprezentowana jest propozycja wyznaczania przedziału wartości parametru wygładzania w estymacji jądrowej funkcji gęstości. Na podstawie wyników badań symulacyjnych określone są własności rozważanych metod wyboru parametru wygładzania.
Ad hoc methods in the choice of smoothing parameter in kernel density estimation, although often used in practice due to their simplicity and hence the calculated efficiency, are characterized by quite big error. The value of the smoothing parameter chosen by Silverman method is close to optimal value only when the density function in population is the normal one. Therefore, this method is mainly used at the initial stage of determining a kernel estimator and can be used only as a starting point for further exploration of the smoothing parameter value. This paper presents ad hoc methods for determining the smoothing parameter. Moreover, the interval of smoothing parameter values is proposed in the estimation of kernel density function. Basing on the results of simulation studies, the properties of smoothing parameter selection methods are discussed.
Źródło:
Acta Universitatis Lodziensis. Folia Oeconomica; 2017, 6, 332; 73-86
0208-6018
2353-7663
Pojawia się w:
Acta Universitatis Lodziensis. Folia Oeconomica
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
A complete gradient clustering algorithm formed with kernel estimators
Autorzy:
Kulczycki, P.
Charytanowicz, M.
Powiązania:
https://bibliotekanauki.pl/articles/907781.pdf
Data publikacji:
2010
Wydawca:
Uniwersytet Zielonogórski. Oficyna Wydawnicza
Tematy:
analiza danych
eksploracja danych
grupowanie
metoda statystyczna
estymacja jądrowa
obliczenia numeryczne
data analysis
data mining
clustering
gradient procedures
nonparametric statistical methods
kernel estimators
numerical calculations
Opis:
The aim of this paper is to provide a gradient clustering algorithm in its complete form, suitable for direct use without requiring a deeper statistical knowledge. The values of all parameters are effectively calculated using optimizing procedures. Moreover, an illustrative analysis of the meaning of particular parameters is shown, followed by the effects resulting from possible modifications with respect to their primarily assigned optimal values. The proposed algorithm does not demand strict assumptions regarding the desired number of clusters, which allows the obtained number to be better suited to a real data structure. Moreover, a feature specific to it is the possibility to influence the proportion between the number of clusters in areas where data elements are dense as opposed to their sparse regions. Finally, the algorithm-by the detection of one-element clusters-allows identifying atypical elements, which enables their elimination or possible designation to bigger clusters, thus increasing the homogeneity of the data set.
Źródło:
International Journal of Applied Mathematics and Computer Science; 2010, 20, 1; 123-134
1641-876X
2083-8492
Pojawia się w:
International Journal of Applied Mathematics and Computer Science
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-8 z 8

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies