Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "k-rainbow domination" wg kryterium: Temat


Wyświetlanie 1-5 z 5
Tytuł:
Total Domination in Generalized Prisms and a New Domination Invariant
Autorzy:
Tepeh, Aleksandra
Powiązania:
https://bibliotekanauki.pl/articles/32222717.pdf
Data publikacji:
2021-11-01
Wydawca:
Uniwersytet Zielonogórski. Wydział Matematyki, Informatyki i Ekonometrii
Tematy:
domination
k -rainbow total domination
total domination
Opis:
In this paper we complement recent studies on the total domination of prisms by considering generalized prisms, i.e., Cartesian products of an arbitrary graph and a complete graph. By introducing a new domination invariant on a graph G, called the k-rainbow total domination number and denoted by γkrt(G), it is shown that the problem of finding the total domination number of a generalized prism G □ Kk is equivalent to an optimization problem of assigning subsets of {1, 2, . . ., k} to vertices of G. Various properties of the new domination invariant are presented, including, inter alia, that γkrt(G) = n for a nontrivial graph G of order n as soon as k ≥ 2Δ(G). To prove the mentioned result as well as the closed formulas for the k-rainbow total domination number of paths and cycles for every k, a new weight-redistribution method is introduced, which serves as an efficient tool for establishing a lower bound for a domination invariant.
Źródło:
Discussiones Mathematicae Graph Theory; 2021, 41, 4; 1165-1178
2083-5892
Pojawia się w:
Discussiones Mathematicae Graph Theory
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Outer independent rainbow dominating functions in graphs
Autorzy:
Mansouri, Zhila
Mojdeh, Doost Ali
Powiązania:
https://bibliotekanauki.pl/articles/1397885.pdf
Data publikacji:
2020
Wydawca:
Akademia Górniczo-Hutnicza im. Stanisława Staszica w Krakowie. Wydawnictwo AGH
Tematy:
outer-independent rainbow domination
K1
r -free graphs
trees
Opis:
A 2-rainbow dominating function (2-rD function) of a graph G = (V, E) is a function $ f : V(G) \rightarrow \{ \emptyset, \{1\}, \{2\}, \{1, 2\}\}$ having the property that if $f(x) = \emptyset$, then $f(N(x))= \{1,2\}$. The 2-rainbow domination number $\gamma_{r2}(G)$ is the minimum weight of $ \sum_{v \in V(G)} |f(v)| $ taken over all 2-rainbow dominating functions $f$. An outer-independent 2-rainbow dominating function (OI2-rD function) of a graph G is a 2-rD function $f$ for which the set of all $ v \in V(G)$ with $ f(v)=\emptyset $ is independent. The outer independent 2-rainbow domination number [formula] is the minimum weight of an OI2-rD function of G. In this paper, we study the OI2-rD number of graphs. We give the complexity of the problem OI2-rD of graphs and present lower and upper bounds on $\gamma_{oir2} (G) $. Moreover, we characterize graphs with some small or large OI2-rD numbers and we also bound this parameter from above for trees in terms of the order, leaves and the number of support vertices and characterize all trees attaining the bound. Finally, we show that any ordered pair (a, b) is realizable as the vertex cover number and OI2-rD numbers of some non-trivial tree if and only if $a+1 \leq b \leq 2a $.
Źródło:
Opuscula Mathematica; 2020, 40, 5; 599-615
1232-9274
2300-6919
Pojawia się w:
Opuscula Mathematica
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
On the Complexity of Reinforcement in Graphs
Autorzy:
Rad, Nader Jafari
Powiązania:
https://bibliotekanauki.pl/articles/31340751.pdf
Data publikacji:
2016-11-01
Wydawca:
Uniwersytet Zielonogórski. Wydział Matematyki, Informatyki i Ekonometrii
Tematy:
domination
total domination
total restrained domination
p- domination
k-rainbow domination
reinforcement
NP-hard
Opis:
We show that the decision problem for p-reinforcement, p-total rein- forcement, total restrained reinforcement, and k-rainbow reinforcement are NP-hard for bipartite graphs.
Źródło:
Discussiones Mathematicae Graph Theory; 2016, 36, 4; 877-887
2083-5892
Pojawia się w:
Discussiones Mathematicae Graph Theory
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
The k-Rainbow Bondage Number of a Digraph
Autorzy:
Amjadi, Jafar
Mohammadi, Negar
Sheikholeslami, Seyed Mahmoud
Volkmann, Lutz
Powiązania:
https://bibliotekanauki.pl/articles/31339490.pdf
Data publikacji:
2015-05-01
Wydawca:
Uniwersytet Zielonogórski. Wydział Matematyki, Informatyki i Ekonometrii
Tematy:
k-rainbow dominating function
k-rainbow domination number
k-rainbow bondage number
digraph
Opis:
Let $ D = (V,A) $ be a finite and simple digraph. A $k$-rainbow dominating function ($ k \text{RDF} $) of a digraph $D$ is a function $f$ from the vertex set $V$ to the set of all subsets of the set ${1, 2, . . ., k}$ such that for any vertex $ v \in V $ with $ f(v) = \emptyset $ the condition \( \bigcup_{ u \in N^−(v) } f(u) = {1, 2, . . ., k} \) is fulfilled, where $ N^− (v) $ is the set of in-neighbors of $v$. The weight of a \( k \text{RDF} \) \( f \) is the value \( \omega (f) = \sum_{v \in V} |f(v)| \). The $k$-rainbow domination number of a digraph $D$, denoted by $ \gamma_{rk} (D) $, is the minimum weight of a $ k \text{RDF} $ of $D$. The $k$-rainbow bondage number $ b_{rk} (D) $ of a digraph $D$ with maximum in-degree at least two, is the minimum cardinality of all sets $ A^\prime \subseteq A $ for which $ \gamma_{rk} (D−A^\prime ) > \gamma_{rk} (D) $. In this paper, we establish some bounds for the $k$-rainbow bondage number and determine the $k$-rainbow bondage number of several classes of digraphs.
Źródło:
Discussiones Mathematicae Graph Theory; 2015, 35, 2; 261-270
2083-5892
Pojawia się w:
Discussiones Mathematicae Graph Theory
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
The k-rainbow domatic number of a graph
Autorzy:
Sheikholeslami, Seyyed
Volkmann, Lutz
Powiązania:
https://bibliotekanauki.pl/articles/743715.pdf
Data publikacji:
2012
Wydawca:
Uniwersytet Zielonogórski. Wydział Matematyki, Informatyki i Ekonometrii
Tematy:
k-rainbow dominating function
k-rainbow domination number
k-rainbow domatic number
Opis:
For a positive integer k, a k-rainbow dominating function of a graph G is a function f from the vertex set V(G) to the set of all subsets of the set {1,2, ...,k} such that for any vertex v ∈ V(G) with f(v) = ∅ the condition ⋃_{u ∈ N(v)}f(u) = {1,2, ...,k} is fulfilled, where N(v) is the neighborhood of v. The 1-rainbow domination is the same as the ordinary domination. A set ${f₁,f₂, ...,f_d}$ of k-rainbow dominating functions on G with the property that $∑_{i = 1}^d |f_i(v)| ≤ k$ for each v ∈ V(G), is called a k-rainbow dominating family (of functions) on G. The maximum number of functions in a k-rainbow dominating family on G is the k-rainbow domatic number of G, denoted by $d_{rk}(G)$. Note that $d_{r1}(G)$ is the classical domatic number d(G). In this paper we initiate the study of the k-rainbow domatic number in graphs and we present some bounds for $d_{rk}(G)$. Many of the known bounds of d(G) are immediate consequences of our results.
Źródło:
Discussiones Mathematicae Graph Theory; 2012, 32, 1; 129-140
2083-5892
Pojawia się w:
Discussiones Mathematicae Graph Theory
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-5 z 5

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies